Energy, Vol.35, No.2, 740-750, 2010
Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems
A suitable operational strategy for a power interchange operation using multiple residential solid oxide fuel cell (SOFC) cogeneration systems for saving energy is investigated by an optimization approach based on mixed-integer linear programming. In this power interchange operation, electricity generated by residential SOFC cogeneration systems is shared among households in a housing complex without allowing a reverse power flow to a commercial electric power system in order to increase electric load factors of the system. For an SOFC cogeneration system operated continuously with the minimum output, two types of operational strategies for the power interchange operation are adopted: an operation to meet the total demand for electricity in intended households by the electricity output of SOFC cogeneration systems and an operation to meet the demand for hot water in each household by the hot water output of the SCFC cogeneration system. To clarify a theoretical limit of the energy-saving effects of the two strategies, this study numerically analyzes optimal operation patterns for 20 households on three representative days. The results show that the former operational strategy, which takes advantage of the high electricity generating efficiency of the SOFC, is more suitable for saving energy as compared to the latter strategy. (C) 2009 Elsevier Ltd. All rights reserved.
Keywords:Cogeneration;Solid oxide fuel cell;Thermal storage;Power interchange;Operation planning;Optimization;Energy saving