화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.28, No.3, 853-859, March, 2011
Covalent crowding strategy for trypsin confined in accessible mesopores with enhanced catalytic property and stability
E-mail:
Chemically modified macromolecules were assembled with adsorptive trypsin in mesoporous silica foams (MCFs) to establish covalent linkage. Effects of catalytic properties and stability of immobilized trypsin were examined. The addition of chemically modified protein (BSA) and polysaccharide (ficoll) to the immobilized trypsin exhibited high coupled yield (above 90%) and relative activities (174.5% and 175.9%, respectively), showing no protein leaching after incubating for 10 h in buffers. They showed broader pH and temperature profiles, while the half life of thermal stability of BSA-modified preparation at 50℃ increased to 1.3 and 2.3 times of unmodified and free trypsin, respectively. The modified trypsin in aqueous-organic solvents exhibited 100% activity after 6 h at 50 ℃. The kinetic parameters of trypsin preparations and suitable pore diameter of MCFs warranted compatibility of covalent modification for substrate transmission. The covalent crowding modification for immobilized trypsin in nanopores establishes suitable and accessible microenvironment and renders possibility of biological application.
  1. Brady D, Jordaan J, Biotechnol. Lett., 31(11), 1639 (2009)
  2. Sheldon RA, Adv. Synth. Catal., 349(8-9), 1289 (2007)
  3. Lee SK, Park SW, Kim YI, Chung KH, Hong SI, Kim SW, Korean J. Chem. Eng., 19(2), 261 (2002)
  4. Wang YJ, Caruso F, Chem. Mater., 17, 953 (2005)
  5. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R, Enzyme Microb. Technol., 40(6), 1451 (2007)
  6. Wang AM, Zhou C, Du ZQ, Liu MQ, Zhu SM, Shen SB, Ouyang PK, J. Biosci. Bioeng., 107(3), 219 (2009)
  7. Liu T, Wang S, Chen G, Talanta., 77, 1767 (2009)
  8. Jiang M, Guo ZH, J. Am. Chem. Soc., 129(4), 730 (2007)
  9. Ellis RJ, Curr. Opin. Struc. Biol., 11, 114 (2001)
  10. Zorrilla S, Rivas G, Acuna AU, Lillo MP, Protein Sci., 13, 2960 (2004)
  11. Pessela BC, Mateo C, Filho M, Carrascosa AV, Fernandez-Lafuente R, Guisan JM, Process Biochem., 43, 193 (2008)
  12. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R, Enzyme Microb. Technol., 40(6), 1451 (2007)
  13. Schmidt-Winkel P, Lukens WW, Zhao DY, Yang PD, Chmelka BF, Stucky GD, J. Am. Chem. Soc., 121(1), 254 (1999)
  14. Bradford MM, Anal. Biochem., 72, 248 (1987)
  15. Lyubinskii GV, Kalinichenko EA, Tertykh VA, Theor. Exp.Chem., 28, 216 (1993)
  16. Lopez-Gallego F, Betancor L, Mateo C, Hidalgo A, Alonso-Morales N, Dellamora-Ortiz G, Guisan JM, Fernandez-Lafuente R, J. Biotechnol., 119, 70 (2005)
  17. Mateo U, Palomo JM, Fuentes M, Betancor L, Grazu V, Lopez-Gallego F, Pessela BCC, Hidalgo A, Fernandez-Lorente G, Fernandez-Lafuente R, Guisan JM, Enzyme Microb. Technol., 39(2), 274 (2006)
  18. Kinjo AR, Takada S, Phys. Rev., 66, 031911 (2002)
  19. Zhou C, Wang A, Du Z, Zhu S, Shen S, Korean J. Chem. Eng., 26(4), 1065 (2009)
  20. Ellis RJ, Curr. Opin. Struc. Biol., 11, 114 (2001)
  21. Soares M, De Castro HF, Santana MH, Zanin GM, Appl. Biochem. Biotechnol., 91-93, 703 (2001)
  22. Cheung MS, Thirumalai D, J. Mol. Biol., 357, 632 (2006)
  23. Minton AP, Curr. Opin. Struc. Biol., 10, 34 (2000)
  24. Zhang ZD, He ZM, He MX, J. Mol. Catal. B-Enzym., 14, 85 (2001)
  25. Boonyaratanakornkit BB, Park CB, Clark DS, Biochem. Biophys. Acta., 1595, 235 (2002)
  26. Wang WG, Li PH, Shen SB, Ying HJ, Ouyang PK, Chinese J. Org. Chem., 26, 826 (2006)