Korean Journal of Chemical Engineering, Vol.28, No.6, 1340-1346, June, 2011
Modification of Ergun equation for application in trickle bed reactors randomly packed with trilobe particles using computational fluid dynamics technique
E-mail:
Based on a slit model, a pellet scale model has been developed for calculation of drag force imposed on trilobe catalyst particles in a packed bed reactor. The drag coefficient for single gas phase flow in a porous media has been calculated by CFD simulation and the results compared to the Ergun equation. The results show that the drag coefficient predicted by Ergun equation should be modified for various bed porosities, particle aspect ratio and gas densities. Therefore, a correction factor has been proposed to correct the Ergun equation constants in various conditions for trilobe particles. Comparison between the proposed corrected Ergun equation results and experimental data indicates considerable agreement.
Keywords:Trickle Bed Reactor;Drag Coefficient;Computational Fluid Dynamics (CFD);Ergun Equation;Pellet Scale Model
- Attou A, Boyer C, Ferschneider G, Chem. Eng. Sci., 54(6), 785 (1999)
- Boyer C, Volpi C, Ferschneider G, Chem. Eng. Sci., 62(24), 7026 (2007)
- Lopes RJG, Quinta-Ferreira RM, Chem. Eng. J., 145(1), 112 (2008)
- Yamada H, Goto S, Korean J. Chem. Eng., 21(4), 773 (2004)
- Ahmadi Motlagh AH, Hashemabadi SH, Int. Commun. Heat Mass Transfer., 35, 1183 (2008)
- Mirhashemi F, Hashemabadi SH, The 6th International Chemical Engineering Congress and Exhibition (IChEC), Kish Island, Iran (2009)
- Hashemabadi SH, Mirhashemi F, The 2nd National Conference on CFD Applications in Chemical Industries, Tehran, Iran (2009)
- Nemec D, Levec J, Chem. Eng. Sci., 60(24), 6947 (2005)
- Nemec D, Levec J, Chem. Eng. Sci., 60(24), 6958 (2005)
- Gunjal PR, Ranade VV, Chem. Eng. Sci., 62(18-20), 5512 (2007)
- Julcour-Lebigue C, Augier F, Maffre H, Wilhelm AM, Delmas H, Ind. Eng. Chem. Res., 48(14), 6811 (2009)
- Nguyen NL, Reimert R, Hardy EH, Chem. Eng. Technol., 29(7), 820 (2006)
- Carbonell RG, Oil & Gas Sci. Technol., 55, 417 (2000)
- Regupathi I, JagadeeshBabu PE, Chitra M, Murugesan T, Korean J. Chem. Eng., 27(4), 1205 (2010)
- Koo SK, Korean J. Chem. Eng., 23(2), 176 (2006)
- Lakota A, Levec J, Carbonell RG, AIChE J., 48(4), 731 (2002)
- Iliuta I, Larachi F, Int. J. Chem. React. Eng., 3, R4 (2005)
- Iliuta I, Larachi F, Al-Dahhan MH, Chem. Eng. Res. Des., 78(7), 982 (2000)
- Iliuta I, Larachi F, Al-Dahhan MH, AIChE J., 46(3), 597 (2000)
- Attou A, Ferschneider G, Chem. Eng. Sci., 55(3), 491 (2000)
- Attou A, Ferschneider G, Chem. Eng. Sci., 54(21), 5031 (1999)
- Gunjal PR, Kashid MN, Ranade VV, Chaudhari RV, Ind. Eng. Chem. Res., 44(16), 6278 (2005)
- Lopes RJG, Quinta-Ferreira RM, Chem. Eng. Sci., 65(1), 291 (2010)
- Macdonald IF, El-Sayed MS, Mow K, Dulllien FAL, Ind. Eng. Chem. Fund., 18, 199 (1979)
- Attou A, Chem. Eng. Technol., 22(3), 221 (1999)
- Singha S, Sinhamahapatra KP, Ocean Eng., 37, 757 (2010)
- Mahbubar Rahman M, Mashud Karim M, Abdul Alim M, J. Naval Architec. Marine Eng., 4, 27 (2007)
- Patankar SV, Numerical heat transfer and fluid flow, Taylor and Francis (1980)
- Cox RG, J. Fluid Mech., 44, 791 (1970)
- Jayaweera K, Mason BJ, J. Fluid Mech., 22, 709 (1965)
- Lopes RJG, Quinta-Ferreira RM, Chem. Eng. J., 147(2-3), 342 (2009)
- Attou A, Boyer C, Ferschneider G, Chem. Eng. Sci., 54(6), 785 (1999)
- Nemec D, Bercic G, Levec J, Ind. Eng. Chem. Res., 40(15), 3418 (2001)