화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.28, No.6, 1412-1419, June, 2011
Improvement of ATP regeneration efficiency and operation stability in porcine interferon-α production by Pichia pastoris under lower induction temperature
E-mail:
The performance of traditional heterologous protein production by Pichia pastoris with methanol induction at 30 ℃ is poor, characterized by low ATP regeneration rate and weak operation stability. A low temperature induction strategy at 20 ℃ was thus adopted for efficient porcine interferon-α production in a 10 L fermentor. With the strategy, maximal methanol tolerance level could reach about 40 g/L to effectively deal with methanol concentration variations, so that the complicated on-line methanol measurement system could be eliminated. Moreover, metabolic analysis based on multiple state-variables measurements indicated that pIFN-α antiviral activity enhancement profited from the formation of an efficient ATP regeneration system at 20 ℃induction. Compared to the induction strategy at 30 ℃, the proposed strategy increased the ATP regeneration rate by 49-66%, the maximal pIFN-α antiviral activity was enhanced about 20-fold and reached a higher level of 1.5×106 IU/mL.
  1. Cereghino JL, Cregg JM, Fems Microbiol. Rev., 24, 45 (2000)
  2. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM, Yeast., 22, 249 (2005)
  3. Chang HW, Jeng CR, Liu JJ, Lin TL, Chang CC, Chia MY, Tsai YC, Pang VF, Vet. Microbiol., 108, 167 (2005)
  4. Chinsangaram J, Moraes MP, Koster M, Grubman MJ, J. Virol., 77, 1621 (2003)
  5. Cereghino GP, Cereghino JL, Ilgen C, Cregg JM, Curr. Opin. Biotechnol., 13, 329 (2002)
  6. Zhang T, Gong F, Peng Y, Chi ZM, Process. Biochem., 44, 1335 (2009)
  7. Khatri NK, Hoffmann F, Biotechnol. Bioeng., 93(5), 871 (2006)
  8. Nakano A, Lee CY, Yoshida A, Matsumoto T, Shiomi N, Katoh S, J. Biosci. Bioeng., 101(3), 227 (2006)
  9. Hang HF, Chen W, Guo MJ, Chu J, Zhuang YP, Zhang S, Korean J. Chem. Eng., 25(5), 1065 (2008)
  10. Mayson BE, Kilburn DG, Zamost BL, Raymond CK, Lesnicki GJ, Biotechnol. Bioeng., 81(3), 291 (2003)
  11. Jahic M, Rotticci-Mulder JC, Martinelle M, Hult K, Enfors SO, Bioprocess Biosyst. Eng., 24, 385 (2002)
  12. Yu RS, Dong SJ, Zhu YM, Jin H, Gao MJ, Duan ZY, Bioprocess Biosyst. Eng., 33, 473 (2010)
  13. Wang Y, Wang ZH, Xu QL, Du GC, Hua ZZ, Liu LM, Li JH, Chen J, Process. Biochem., 44, 949 (2009)
  14. Lee CY, Lee SJ, Jung KH, Katoh S, Lee EK, Process Biochem., 38, 1147 (2003)
  15. Jungo C, Marison I, von Stockar U, J. Biotechnol., 130, 236 (2007)
  16. Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Sauer M, Altmann F, Ferrer P, Mattanovich D, J. Proteome Res., 8, 1380 (2009)
  17. Zhao HL, Xue C, Wang Y, Yao XQ, Liu ZM, Appl. Microbiol. Biotechnol., 81(2), 235 (2008)
  18. Jahic M, Wallberg F, Bollok M, Garcia P, Enfors SO, Microb. Cell Fact., 2, 6 (2003)
  19. Zhang JG, Wang XD, Zhang JN, Wei DZ, J. Biosci. Bioeng., 105(4), 335 (2008)
  20. Woo SH, Park SH, Lim HK, Jung KH, J. Ind. Microbiol.Biotechnol., 32, 474 (2005)
  21. Li PZ, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N, Renugopalakrishnan V, Appl. Biochem. Biotechnol., 142(2), 105 (2007)
  22. Suye S, Ogawa A, Yokoyama S, Obayashi A, Agric. Biol. Chem., 54, 1297 (1990)
  23. Duan SB, Shi ZP, Feng HJ, Duan ZY, Mao ZG, Biochem. Eng. J., 30, 88 (2006)
  24. Jin H, Zheng ZY, Gao MJ, Duan ZY, Shi ZP, Wang ZX, Jin J, Biochem. Eng. J., 37, 26 (2007)
  25. Charoenrat T, Ketudat-Cairns M, Stendahl-Andersen H, Jahic M, Enfors SO, Bioprocess Biosyst. Eng., 27, 399 (2005)
  26. Schroer K, Peter Luef K, Hartner FS, Glieder A, Pscheidt B, Metab. Eng., 12, 8 (2010)
  27. van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M, Biochim. Biophys. Acta., 12, 1453 (2006)