화학공학소재연구정보센터
Clean Technology, Vol.16, No.4, 277-283, December, 2010
입자상 활성탄에 의한 Eosin Y의 흡착제거
Adsorption Removal of Eosin Y by Granular Activated Carbon
E-mail:
초록
Eosin Y는 식용색소와 염료로 사용되지만 유해한 독성 물절이다. 본 연구에서는 입상활성탄에 의한 eosln Y의 흡착특성을 조사하였다. 활성탄의 OJ을 고정한 상태에서 초기농도,접촉시간,pH 및 흡착온도 등이 eosin Y의 흡착에 미치는 영향을 회분식 빛 흡착칼럼설험을 통하여 연구하였다. Eosin Y에 대한 활성탄의 흡착능은 pH 조절에 의해 크게 개선되었으며,pH=3 에서 초기농도 10 mglL의 99%를 제거할 수 있었다. 회분석 흡착실험을 통해 흡착등온션을 구한 결과 eosin Y의 흡착평형관계는 293-333K 범위에서 Freundlich식이 잘 적용되었다. 흡착등온식으로 부터 평가된 k와 β 값은 각각 19.56-134.62, 0.442- 0.678이었다. 고정층의 운전조건이 파과곡선에 미치는 영호별 조사하였다. 층높이 3 cm, 유속 2 밍lllln에서 eosin Y의 유입농도가 10 mglL에서 30 mglL로 증가함에 따라 파과시간은 470분에서 268분으로 감소하였으며,층높이 3 cm, 유입농도 10 mglL에서 eosin Y의 초기유속이 l 에서 3 glmin로 증가함에 따라 파과시간은 272분에서 140분으로 감소하였다. 또한 층높이가 증가함에 따라 파과시간도 증가하였는데,흡착대의 길이는 비슷한 양상을 나타냈다.
Eosin Y is used a colorant and dye but eosin Y is harmful toxic substance. In this study, the adsorption characteristics of granular activated carbon have been investigated for the adsorption of eosin dye dissolved in water. The effects of initial dye concentration, contact time, pH and temperature on adsorption of eosin by a fixed amount of activated carbon have been studied in batch adsorber and fixed bed, The adsorptivity of activated carbon for eosin Y were largely improved by pH control. When the pH was 3 in the sample, the eosin Y could be removed 99% of initial concentration (lO mgIL). The adsorption equilibrium data are successfully fitted to the Freundlich isotherm equation in the temperature range from 293 to 333 K. The estimated values ofk and ,8 are 19.56-134.62, 0.442-0.678, respectively. The effects of the operation conditions of the fixed bed on the breakthrough curve were investigated. When the inlet eosin Y concentration is increased from 10 to 30 mgIL, the corresponding adsorption breaktime appears to decrease from 470 to 268 min at bed height of 3 cm and a constant flow rate of 2 g/min. When the initial eosin Y flow rate is increased from 1 to 3 g/min, the corresponding adsorption breaktime appears to decrease from 272 to 140 min at bed height of 3 cm and inlet concentration of 10mgIL. Also, breaktime increased with increasing bed height at flow rate of2 g/min and inlet concentration of 10 mgIL. And length of adsorption zone showed similar patterns.
  1. Kim TH, Park C, Kim S, J. Korean Soc. Environ. Eng., 30(4), 439 (2008)
  2. Muruganandham M, Swaminathan M, Dyes and Pigments., 63, 315 (2004)
  3. Budavari S, The Merck Index, 11th ed., Merck & Co. Inc., 564 (1996)
  4. Gurr E, Synthetic Dyes in Biology, Medicine and Chemistry, 1st ed., Academic Press, London, 134 (1971)
  5. Du WL, Xu ZR, Han XY, Xu YL, Miao ZG, J. Hazard. Mater., 153(1-2), 152 (2008)
  6. Purkait MK, DasGupta S, DE S, J. Environ. Manage., 76, 135 (2005)
  7. Yanai H, Activated Carbon Textbook, 3rd ed., The Nikkan Kogyo Shimbun, Ltd., 90 (1977)
  8. Gupta VK, Mittal A, Gajbe V, J. Colloid Interface Sci., 284(1), 89 (2005)
  9. Fukukawa BH, Activated Carbon Water Treatment Technology and Management, 1st ed., Donghwa Technology, 69 (2003)
  10. Jain R, Mathur M, Sikawar S, J. Sci. Ind. Res., 65, 258 (2006)
  11. Ko WS, Shim HH, Yoo IZ, Lee JJ, Heo KS, Unit Operation, 2nd ed., Bomondang, 273 (2005)
  12. Kim JH, Jeong YO, Pendleton P, J. Ind. Eng. Chem., 10(6), 1025 (2004)
  13. Ahmad AA, Hameed BH, J. Hazard. Mater., 175(1-3), 298 (2010)