화학공학소재연구정보센터
Clean Technology, Vol.17, No.2, 156-165, June, 2011
목질계 Biomass로부터 강산 당화 공정에 의한 Bioethanol 생산 공정의 물질 및 열수지
Material and Heat Balances of Bioethanol Production Process by Concentrated Acid Saccharification Process from Lignocellulosic Biomass
E-mail:
초록
본 연구에서는 바이오에탄올 생산을 위한 목질계 바이오매스의 전처리, 당화, 당/산 분리, 발효, 정제에 이르는 전 공정을 조합하고, 상용공정모사기(PRO/II)를 사용하여 공정모사를 수행하였다. 주요 공정으로 강산에 의한 전처리 및 당화, SMB (simulated moving bed)를 사용한 당/산 분리, 그리고 증류 및 투과증발법(Pervaporation)을 이용한 에탄올 탈수 공정을 사용하였다. 열회수 공정을 이용하여 전 공정의 에너지 소비가 최소화 되도록 하고 강산당화공정에 의한 바이오에탄올 생산 공정의 물질수지 및 열 수지를 확인하였다. 공정모사 결과, 1 kg의 에탄올을 생산하는데 필요한 바이오매스는 4.07 kg, 소요된 열량은 3,572 kcal로 계산되었다. 기존 묽은 산 당화공정(SRI 자료)에 비해 26%의 수율 증가와 30% 정도의 에너지 절감이 가능할 것으로 예상되었다. 이러한 수율을 얻기 위해서는 강산당화공정에 의한 전처리 및 당화공정에서 셀룰로오스 및 헤미셀룰로오스의 전환율이 90% 정도에 이르러야한다. 또한 5탄당 발효공정이 개발되어야 한다. 효율적 에너지 절감을 위해서는 SMB 공정에서 분리된 황산수용액의 농도가 20% 이상되어야 하며, SMB 공정에 의한 당/산분리 공정이 실용화되어야 강산당화공정에 의한 목질계 바이오에탄올 생산공정이 상용화될 것이다.
The process for bioethanol production from lignocellulosic biomass was studied through process simulation using PRO/II. Process integration was conducted with concentrated acid pretreatment, hydrolysis process, SMB (simulated moving bed chromatography) process and pervaporation process. Energy consumption could be minimized by the heat recovery process. In addition, material and energy balance were calculated based on the results from the simulation and literature data. A net production yield of 4.07 kg-biomass and energy consumption value of 3,572 kcal per 1 kg ethanol were calculated, which is indicating that 26% yield increase and 30% energy saving compared to the bioethanol production process with dilute-acid hydrolysis (SRI report). In order to make it possible, sugar conversion yield of cellulose and hemi-cellulose is to be reached up to 90% and fermentation of xylose needs to be developed. In order to reduce the energy consumption up to 30%, the concentration of acid solution after being separated by SMB should exceed 20%. If acid/sugar separation by SMB process is to be practical, the bioethanol process designed in this study can be commercially feasible.
  1. Grous WR, Converse AO, Grethlein HE, Enzyme Microb. Technol., 8 (1986)
  2. Alizadeh H, Teymouri F, Gilbert TI, Dale BE, Appl. Biochem. Biotechnol., 121, 1133 (2005)
  3. Xie Y, Phelps D, Lee CH, Sedlak M, Ho N, Wang NHL, Ind. Eng. Chem. Res., 44(17), 6816 (2005)
  4. Kumar P, Barrett DM, Delwiche MJ, Stroeve P, Ind. Eng. Chem. Res., 48(8), 3713 (2009)
  5. Gramblic M, Polakovic M, J. Chem. Eng. Data., 52(2), 345 (2007)
  6. Zaldivar J, Borges A, Johansson B, Smits HP, Villas-Boas SG, Nielsen J, Olsson L, Appl. Microbiol. Biotechnol., 59(4-5), 436 (2002)
  7. Ohgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hagerdal B, Zacchi G, J. Biotechnol., 126, 488 (2006)
  8. Jung H, Choi YS, Yang DR, Joo OS, Jung KD, Clean Technol., 14(2), 129 (2008)
  9. Hamelinck CN, van Hooijdonk G, Faaij APC, Biomass Bioenerg., 28(4), 384 (2005)
  10. Zalesny JA, Zalesny JRS, Coyle DR, Hall RB, Forest Ecol. Manage., 248, 143 (2007)
  11. Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833 (2008)
  12. Kim KS, Kim JS, Korean Chem. Eng. Res., 48(6), 704 (2010)
  13. Wooley RJ, Putsche V, “Development of and ASPEN PLUS Physical Property Database for Biofuels Components,” NREL International Report, April (1996)
  14. Hwangbo JK, Seo JK, Kwak YS, RIST., 23(2), 126 (2009)
  15. Fong WS, “Ethanol for Gasohol,” Process Economics Program, SRI INTERNATIONAL Report No. 149, 115-199 (1982)
  16. Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO, Enzyme Microb. Technol., 24(3-4), 151 (1999)
  17. Badger PC, “Ethanol From Cellulose : A General Review,” in Janick J, Whipkey A., Eds., Trends in new crops and new uses, ASHS Press, Alexandria, VA., 17-21 (2002)
  18. Qin W, “High Consistency Enzymatic Hydrolysis of Lignocellulose," University of British Columbia, April (2010)
  19. Farone WA, Cuzens JE, “Method of Separating Acids and Sugars Resulting from Strong Acid Hydrolysis,” U.S. Patent No. 5580389 (1996)
  20. Lee HH, Kim KM, Lee CH, Korean Ind. Chem. News, 10(6), 23 (2007)
  21. Yu ZS, Zhang HX, Bioresour. Technol., 93(2), 199 (2004)
  22. Lau MW, Gunawan C, Balan V, Dale BE, Biotechnology for Biofuels., 3(11) (2010)
  23. Mohagheghi A, Evans K, Chou YC, Zhang M, Appl. Biochem. Biotechnol., 98(1), 885 (2002)
  24. Knapp JP, Doherty MF, “Low Energy Extractive Distillation Process for Producing Anhydrous Ethanol,” U.S. Patent No. 5,035,776 (1991)
  25. Namboodiri VV, Vane LM, J. Membr. Sci., 306(1-2), 209 (2007)
  26. Tsuyumoto M, Teramoto A, Meares P, J. Membr. Sci., 133(1), 83 (1997)
  27. Cardona Alzate CA, Sa´nchez Toro OJ, Energy., 31, 2447 (2006)
  28. Kunihisa KS, Ogawa H, J. Thermal Anal., 30, 49 (1985)
  29. Wingren A, Galbe M, Zacchi G, Bioresour. Technol., 99(7), 2121 (2008)