화학공학소재연구정보센터
Solid-State Electronics, Vol.62, No.1, 123-127, 2011
Generalization of the van der Pauw relationship derived from electrostatics
In an earlier paper, this author, along with two others Weiss et al. (2008) [1], demonstrated that the original van der Pauw relationship could be derived from three-dimensional electrostatics, as opposed to van der Pauw's use of conformal mapping. The earlier derivation was done for a conducting material of rectangular cross section with contacts placed at the corners. Presented here is a generalization of the previous work involving a square sample and a square array of electrodes that are not confined to the corners, since this measurement configuration could be a more convenient one. As in the previous work, the effects of non-zero sample thickness and contact size have been investigated. Buehler and Thurber derived a similar relationship using an infinite series of current images on a large and thin conducting sheet to satisfy the conditions at the boundary of the sample. The results presented here agree with theirs numerically, but analytic agreement could not be shown using any of the perused mathematical literature. By simply equating the two solutions, it appears that, as a byproduct of this work, a new mathematical relationship has been uncovered. Finally, the application of this methodology to the Hall Effect is discussed. (C) 2011 Elsevier Ltd. All rights reserved.