화학공학소재연구정보센터
Transport in Porous Media, Vol.52, No.2, 229-266, 2003
WAG Displacements of oil-condensates accounting for hydrocarbon ganglia
During two-phase flow in porous media, non-wetting phase is present simultaneously in states of mobile connected continuum and of trapped isolated ganglia. Mass exchange between these two parts of non-wetting phase is going on by dissolution and diffusion of component in the wetting phase, so, compositions of non-wetting phase in both parts are different. Nevertheless, the traditional mathematical model for two-phase multicomponent transport in porous media assumes the homogeneous distribution of each component in the overall non-wetting phase. New governing equations honouring ganglia of non-wetting phase are derived. They are successfully verified by a number of laboratory tests. Analytical model is developed for miscible water-alternate-gas (WAG) displacement of oil-condensates. The modelling shows that the significant amount of oil-condensate is left in porous media after miscible WAG, while the traditional model predicts that the miscible displacement results in the total sweep.