화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.28, No.8, 1754-1760, August, 2011
Simultaneous absorption of carbon dioxide, sulfur dioxide, and nitrogen dioxide into aqueous 1, 8-diamino-p-menthane
E-mail:
3 gaseous mixtures of CO2, SO2, and NO2 were simultaneously absorbed into 1, 8-diamino-p-menthane (DAM) in a stirred, semi-batch tank with a planar, gas-liquid interface within a range of 0-2.0 kmol/m3 of DAM, 0.05-0.3 atm of CO2, 0.0025-0.04 atm of SO2, and 298.15-323.15 K at a fixed NO2 of 0.001 atm to measure their total molar fluxes. Diffusivity and Henry constants of CO2, SO2, and NO2 were obtained using the reference data, measured by N2O analogy. The mass transfer coefficient of each gas, needed to obtain the absorption rate without a chemical reaction, was modified with viscosity of aqueous DAM solution. In CO2-SO2-NO2-DAM system accompanied by firstorder reaction with respect to CO2 and instantaneous reactions with respect to SO2 and NO2, the enhancement factors of CO2 and SO2 were obtained by using an approximate solution of mass balances consisting of reaction regimes of two gases, one of which reacts instantaneously, and then, the enhancement factor of NO2 by comparing the instantaneous rates of SO2 and NO2. The observed values of the molar flux approached to the calculated values very well.
  1. Aresta M, Carbon dioxide recovery and utilization, Kluwer Academic Pub., Boston (2003)
  2. Caplow M, J. Am. Chem. Soc., 90, 6795 (1968)
  3. Danckwerts PV, Chem. Eng. Sci., 34, 443 (1979)
  4. da Silva EF, Svendsen HF, Ind. Eng. Chem. Res., 43(13), 3413 (2004)
  5. Mimura T, Suda T, Iwaki I, Honda A, Kumazawa H, Chem. Eng. Commun., 170, 245 (1998)
  6. Stein J, Kind M, Schlunder EU, Chem. Eng. J., 86(1-2), 17 (2002)
  7. Jung SH, Jeong GT, Lee GY, Cha JM, Park DH, Korean J. Chem. Eng., 24(6), 1064 (2007)
  8. Ebrahimi S, Picioreanu C, Kleerebezem R, Heijnen JJ, van Loosdrecht MCM, Chem. Eng. Sci., 58(16), 3589 (2003)
  9. Colle S, Vanderschuren J, Thomas D, Chem. Eng. Process., 43(11), 1397 (2004)
  10. Xia JZ, Rumpf B, Maurer G, Ind. Eng. Chem. Res., 38(3), 1149 (1999)
  11. Vandam MH, Lamine AS, Roizard D, Lochon P, Roizard C, Ind. Eng. Chem. Res., 36(11), 4628 (1997)
  12. Nagel D, de Kermadec R, Lintz HG, Roizard C, Lapicque F, Chem. Eng. Sci., 57(22-23), 4883 (2002)
  13. Danckwerts PV, Gas-liquid reactions, McGraw-Hill, New York (1970)
  14. Denbigh KG, Prince AJ, J. Am. Chem. Soc., 69, 790 (1947)
  15. Gray P, Yoffe AD, Chem. Rev., 55, 1069 (1955)
  16. Carberry JJ, Chem. Eng. Sci., 9, 189 (1959)
  17. Caudle PG, Denbigh KG, Trans. Faraday, Soc., 49, 39 (1959)
  18. Wendel MM, Pigford RL, J. Am. Chem. Soc., 4, 249 (1958)
  19. Ho MP, Klinzing GE, Can J. Chem. Eng., 64, 243 (1986)
  20. Sada E, Kumazawa H, Yoshikawa Y, J. Am. Chem. Soc., 34, 1215 (1988)
  21. Kenig EY, Schneider R, Gorak A, Chem. Eng. Sci., 54(21), 5195 (1999)
  22. Park SW, Park DW, Oh KJ, Kim SS, Sep. Sci. Technol., 44(3), 543 (2009)
  23. Hwang KS, Kim DW, Park SW, Park DW, Oh KJ, Kim SS, Sep. Sci. Technol., 44(16), 3888 (2009)
  24. Oh KJ, Kim SS, Park SW, Sep. Sci. Technol., To be accepted (2010)
  25. Goetter LA, Pigford RL, J. Am. Chem. Soc., 17, 793 (1971)
  26. Hikita H, Asai S, Ishikawa H, Chem. Eng., J., 18, 169 (1979)
  27. Oh KJ, Choi YS, Kim SS, Park SW, Korean J. Chem. Eng., To be accepted (2010)
  28. Seo JB, Jeon SB, Choi WJ, Kim JW, Lee GH, Oh KJ, Korean J. Chem. Eng., 28(1), 170 (2011)
  29. Daraiswany LK, Sharma MM, Heterogeneous reaction: Analysis, example and reactor design, Wiley, New York (1984)
  30. Yu W, Astarita G, Savage DW, Chem. Eng. Sci., 40, 1585 (1985)
  31. Versteeg GF, van Swaaij WPM, J. Chem. Eng. Data., 33, 29 (1988)
  32. Saha AK, Bandyopadhyay SS, Biswas AK, J. Chem. Eng. Data., 38, 78 (1993)
  33. Pasiuk-Bronikowska W, Rudzinski KJ, Chem. Eng. Sci., 46, 2281 (1991)
  34. Shadid FT, Handley D, Chem. Eng. Res. Dev., 67, 185 (1989)
  35. Cussler EL, Diffusion, Cambridge University Press, New York (1984)
  36. Carta G, Pigford RL, Ind. Eng. Chem. Fundam., 22, 329 (1983)