화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.28, No.9, 1844-1850, September, 2011
Optimization of physical parameters of solid oxide fuel cell electrode using electrochemical model
E-mail:
To enhance the performance of anode-supported solid oxide fuel cell (SOFC), an electrochemical model has been developed in this study. The Butler-Volmer equation, Ohm’s law and dusty-gas model are incorporated to predict the activation, ohmic and concentration overpotentials, respectively. The optimal cell microstructure and operating parameters for the best current-voltage (J-V) characteristics have been sought from the information of the exchange current density and gas diffusion coefficients. As the cell temperature rises, the activation and ohmic overpotentials decrease, whereas the concentration overpotential increases due to the considerable reduction of gas density at the elevated temperature despite the increased diffusion coefficient. Also, increasing the hydrogen molar fraction and operating pressure can further augment the maximum cell output. Since there exists an optimum electrode pore size and porosity for maximum cell power density, the graded electrode has newly been designed to effectively reduce both the activation and concentration overpotentials. The results exhibit 70% improved cell performance than the case with a non-graded electrode. This electrochemical model will be useful to simply understand overpotential features and devise the strategy for optimal cell design in SOFC systems.
  1. Hamakawa S, Sato K, Hayakawa T, York AP, Tsunoda T, Suzuki K, Shimizu M, Takehira K, J. Electrochem. Soc., 144(1), 1 (1997)
  2. Bejan A, Cambridge University Press (2000)
  3. Ordonez JC, Chen S, Vargas JVC, Dias FG, Gardolinski JEFC, Vlassov D, Int. J. Energy Res., 31(14), 1337 (2007)
  4. Hernandez-Pacheco E, Singh D, Hutton PN, Patel N, Mann MD, J. Power Sources, 138(1-2), 174 (2004)
  5. Kakac S, Pramuanjaroenkij A, Zhou XY, Int. J. Hydrog. Energy., 32, 761 (2007)
  6. Costamagna P, Costa P, Antonucci V, Electrochim. Acta, 43(3-4), 375 (1998)
  7. Kim JW, Virkar AV, Fung KZ, Mehta K, Singhal SC, J. Electrochem. Soc., 146(1), 69 (1999)
  8. Sunde S, J. Electroceram., 5(2), 153 (2000)
  9. Divisek J, Jung R, Vinke IC, J. Appl. Electrochem., 29(2), 165 (1999)
  10. Chan SH, Xia ZT, J. Electrochem. Soc., 148(4), A388 (2001)
  11. Chan SH, Khor KA, Xia ZT, J. Power Sources, 93(1-2), 130 (2001)
  12. Zhu HY, Kee RJ, J. Power Sources, 117(1-2), 61 (2003)
  13. Lehnert W, Meusinger J, Thom F, J. Power Sources, 87(1-2), 57 (2000)
  14. Yakabe H, Hishinuma M, Uratani M, Matsuzaki Y, Yasuda I, J. Power Sources, 86(1-2), 423 (2000)
  15. Achenbach E, J. Power Sources., 49, 333 (1994)
  16. Yakabe H, Ogiwara T, Hishinuma M, Yasuda I, J. Power Sources, 102(1-2), 144 (2001)
  17. Iwata M, Hikosaka T, Morita M, Iwanari T, Ito K, Onda K, Esaki Y, Sakaki Y, Nagata S, Solid State Ion., 132(3-4), 297 (2000)
  18. Deng XH, Petric A, J. Power Sources, 140(2), 297 (2005)
  19. Suwanwarangkul R, Croiset E, Fowler MW, Douglas PL, Entchev E, Douglas MA, J. Power Sources, 122(1), 9 (2003)
  20. Chan SH, Khor KA, Xia ZT, J. Power Sources, 93(1-2), 130 (2001)
  21. Zhu HY, Kee RJ, J. Power Sources, 117(1-2), 61 (2003)
  22. Ferguson JR, Fiard JM, Herbin R, J. Power Sources., 58, 109 (1996)
  23. Ringuede A, Bronine D, Frade JR, Solid State Ion., 146(3-4), 219 (2002)
  24. Chan SH, Xia ZT, J. Appl. Electrochem., 32(3), 339 (2002)
  25. Ni M, Leung MKH, Leung DYC, J. Power Sources, 168(2), 369 (2007)
  26. Kong JR, Sun KN, Zhou DR, Zhang NQ, Mu J, Qiao JS, J. Power Sources, 166(2), 337 (2007)
  27. Ni M, Leung MKH, Leung DYC, Energy Conv. Manag., 48(5), 1525 (2007)
  28. Song TW, Sohn JL, Kim JH, Kim TS, Ro ST, Suzuki K, J. Power Sources, 142(1-2), 30 (2005)
  29. Costamagna P, Magistri L, Massardo AF, J. Power Sources, 96(2), 352 (2001)
  30. Petruzzi L, Cocchi S, Fineschi F, J. Power Sources, 118(1-2), 96 (2003)
  31. Pfafferodt M, Heidebrecht P, Stelter M, Sundmacher K, J. Power Sources, 149, 53 (2005)
  32. Ringuede A, Bronine D, Frade JR, Solid State Ionics., 146, 219 (20)