화학공학소재연구정보센터
Macromolecular Research, Vol.19, No.8, 797-808, August, 2011
Effect of 3,5-Diaminobenzoic Acid Content, Casting Solvent, and Physical Aging on Gas Permeation Properties of Copolyimides Containing Pendant Acid Groups
E-mail:
A series of copolyimides containing carboxylic acid groups have been prepared from 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and two diamines, 2,4,6-trimethyl-1,3-phenylenediamine and bis(4-amino-3-isopropyl-5-methylphenyl)methane. Carboxylic acid groups were introduced using 3,5-diaminobenzoic acid (DABA) as a comonomer in different proportions in both series of polyimides. The polymers were fully characterized using spectroscopic and thermal analysis techniques. The gas permeation properties of the polymer films were investigated and the results were explained mainly by anhydride formation, which depended not only on the -COOH content, flexibility, and structure of the polymer chain but also on the thermal treatment of the membrane. Copolyimides with the lowest DABA content of both series showed the best permeation properties, particularly the copolyimide that contained 25% of acid units, which showed O2, N2, CH4, and CO2 permeability coefficients close to 40, 10, 7, and 145 barrers, respectively. The gas separation properties were evaluated using three different casting solvents, N-methylpyrrolidinone, tetrahydrofuran, and acetone. At the initial stage, large differences in permeability coefficients were obtained for each copolyimide. On the other hand, after 1,000 h aging at room temperature, the membranes of each series showed similar permeability coefficients.
  1. Hirayama Y, Yoshinaga T, Kusuki Y, Ninomiya K, Sakakibara T, Tamari T, J. Membr. Sci., 111(2), 169 (1996)
  2. Kim TH, Koros WJ, Husk GR, O’Brien KC, J. Membr. Sci., 37, 45 (1988)
  3. Tanaka K, Kita H, Okano M, Okamoto K, Polymer, 33, 585 (1992)
  4. Wang LN, Cao YM, Zhou MQ, Ding XL, Liu QH, Yuan Q, Polym. Bull., 60(1), 137 (2008)
  5. Ferrero E, Synthesis and Characterization of New Aromatic Polyamides and Polyimides. Evaluation as Gas Seperation Membranes, Ph.D. Dissertation, University of Valladolid, Spain, 2002.
  6. Schleiffelder M, Staudt-Bickel C, React. Funct. Polym., 49(3), 205 (2001)
  7. Pithan F, Staudt-Bickel C, Chem. Phys. Chem., 4, 967 (2003)
  8. Hess S, Staudt C, Desalination, 217(1-3), 8 (2007)
  9. Xu WY, Paul DR, Koros WJ, J. Membr. Sci., 219(1-2), 89 (2003)
  10. Hibshman C, Cornelius CJ, Marand E, J. Membr. Sci., 211(1), 25 (2003)
  11. Staudt-Bickel C, Koros WJ, J. Membr. Sci., 155(1), 145 (1999)
  12. Park SH, Kim KJ, So WW, Moon SJ, Lee SB, Macromol. Res., 11(3), 157 (2003)
  13. Shao L, Chung TS, Wensley G, Goh SH, Pramoda KP, J. Membr. Sci., 244(1-2), 77 (2004)
  14. Bas C, Mercier R, Sanchez-Marcano J, Neyertz S, Alberola ND, Pinel E, J. Polym. Sci. B: Polym. Phys., 43(17), 2413 (2005)
  15. Pfromm PH, Koros WJ, Polymer, 36(12), 2379 (1995)
  16. Hu CC, Fu YJ, Hsiao SW, Lee KR, Lai JY, J. Membr. Sci., 303(1-2), 29 (2007)
  17. Fu YJ, Hsiao SW, Hu CC, Qui HZ, Lee KR, Lai JY, Desalination, 234(1-3), 58 (2008)
  18. Eastmond GC, Gibas M, Pacynko WF, Paprotny J, J. Membr. Sci., 207(1), 29 (2002)
  19. Espeso JF, Ferrero E, De la Campa JG, Lozano AE, De Abajo J, J. Polym. Sci. A: Polym. Chem., 39(4), 475 (2001)
  20. Langsam M, Burgoyne WF, J. Polym. Sci. A: Polym. Chem., 31, 909 (1993)
  21. Maya EM, Lozano AE, de Abajo J, de la Campa JG, Polym. Degrad. Stabil., 92, 2294 (2007)
  22. Sundar S, Jang WB, Lee C, Shul Y, Han H, J. Polym. Sci. B: Polym. Phys., 43(17), 2370 (2005)
  23. Coates J, in Encyclopedia of Analytical Chemistry, Meyers RA, Ed., John Wiley & Sons Ltd., Chichester, 2000, pp 10815-10837.
  24. Wind JD, Paul DR, Koros WJ, J. Membr. Sci., 228(2), 227 (2004)
  25. Jung CH, Lee YM, Macromol. Res., 16(6), 555 (2008)
  26. Kim JH, Koros WJ, Paul DR, Polymer, 47(9), 3094 (2006)