화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.1, 205-211, January, 2012
The effect of operating conditions on the performance of hollow fiber membrane modules for CO2/N2 separation
E-mail:
A commercialized polysulfone (PSf) hollow-fiber membrane module was tested for CO2/N2 separation performance for application in post-combustion capture. Cost efficiency, easy module manufacturing, and efficiency in gas separation are the main advantages of using PSf hollow-fiber modules for CO2 separation. The effects of operating conditions such as temperature, pressure, and feed composition on separation performance were examined at various stage cuts. A 2-stage system including concentration of feed composition at stage 1 and production of high-purity CO2 at stage 2 was constructed to improve separation efficiency. Higher operating temperature and pressure increased CO2 permeance, but the loss of selectivity and higher energy consumption are a concern. Modules with various membrane areas were also used to test the effect of area on CO2 separation.
  1. Lashof DA, Ahuja DR, Nature., 344, 529 (1990)
  2. Smith SJ, Wigley ML, Clim. Change., 44, 445 (2000)
  3. Hoffert MI, Caldeira K, Benford G, Criswell DR, Green C, Herzog H, Jain AK, Kheshgi HS, Lackner KS, Lewis JS, Science., 298, 981 (2002)
  4. Bcs I, Materials for Separation Technologies: Energy and Emission Reduction Opportunities, Oak Ridge National Laboratory Oak Ridge, TN 37830 (2005)
  5. Wong S, Bioletti R, Alberta Research Council (2002)
  6. Kim JH, Min BR, Won J, Kang YS, J. Ind. Eng. Chem., 12(4), 594 (2006)
  7. Sea B, Park YI, Lee KH, J. Ind. Eng. Chem., 8(3), 290 (2002)
  8. Kuraoka K, Hirano T, Yazawa T, Chem. Commun., 2002, 664 (2002)
  9. Ismail AF, Lorna W, Sep. Purif. Technol., 30(1), 37 (2003)
  10. Brunetti A, Scura F, Barbieri G, Drioli E, J. Membr. Sci., 359, 115 (2010)
  11. Basu S, Cano-Odena A, Vankelecom IFJ, Sep. Purif. Technol. (2010)
  12. Jiang X, Kumar A, J. Membr. Sci., 254(1-2), 179 (2005)
  13. Industrial Carbon Capture Project Selections, D.O.E, Wasington D.C. (2010)
  14. Rhim JW, Kim JR, Park YI, Lee KH, J. Ind. Eng. Chem., 7(5), 299 (2001)
  15. Lababidi H, Alenezi GA, Ettouney HM, J. Membr. Sci., 112(2), 185 (1996)
  16. Yeom CK, Lee SH, Lee JM, J. Appl. Polym. Sci., 78, 479 (2000)
  17. Ji PF, Cao YM, Zhao HY, Kang GD, Jie XM, Liu DD, Liu JH, Yuan Q, J. Membr. Sci., 342(1-2), 190 (2009)
  18. Park HB, Han SH, Jung CH, Lee YM, Hill AJ, J. Membr. Sci., 359, 11 (2010)
  19. Yave W, Szymczyk A, Yave N, Roslaniec Z, J. Membr. Sci., 362, 407 (2010)
  20. Scholes CA, Smith KH, Kentish SE, Stevens GW, Int. J. Greenhouse Gas Control., 4, 739 (2010)
  21. Omole IC, Adams RT, Miller SJ, Koros WJ, Ind. Eng. Chem. Res., 49(10), 4887 (2010)
  22. Brandrup J, Immergut EH, Grulke EA, Polymer Handbook, John Wiley & Sons,Inc., 2004 6/558.
  23. Powell CE, Qiao GG, J. Membr. Sci., 279(1-2), 1 (2006)
  24. Morisato A, Pinnau I, J. Membr. Sci., 121(2), 243 (1996)
  25. Villaluenga JPG, Tabe-Mohammadi A, J. Polym. Eng., 23, 209 (2003)
  26. Bounaceur R, Lape N, Roizard D, Vallieres C, Favre E, Energy, 31(14), 2556 (2006)
  27. Zhao L, Riensche E, Menzer R, Blum L, Stolten D, J. Membr. Sci., 325(1), 284 (2008)
  28. Sridhar S, Suryamurali R, Smitha B, Aminabhavi TM, Colloids Surf. A: Physicochem.Eng. Aspects., 297, 267 (2007)
  29. Ho MT, Allinson GW, Wiley DE, Ind. Eng. Chem. Res., 47(5), 1562 (2008)