Journal of Industrial and Engineering Chemistry, Vol.18, No.1, 344-348, January, 2012
Effect of urea, NH4OH, and DCCA on texture properties of alumina prepared by ultrasonic spray pyrolysis
E-mail:
Mesoporous alumina particles were prepared by using a spray pyrolysis process of aluminum nitrate precursor using cetyltrimethylammonium bromide (CTAB) as a structure-directing agent. The effects of ammonium hydroxide, urea, and drying-control-chemical agent (DCCA) on the particle morphology and pore properties of alumina particles were studied by means of N2 physical adsorption, transmission electron microscopy (TEM), and small-angle X-ray diffraction (SAXS) analysis. It was found that using urea rather than NH4OH in the spray pyrolysis is effective to increase the surface area of alumina with well-organized uniform pores. The addition of NH4OH led to decrease the surface area as well as the pore regularity. Using both DCCA and urea was a helpful way to improve the surface area, the pore volume, and the pore size distribution of alumina synthesized by spray pyrolysis. The prepared alumina particles had
a broad SAXS peak without further reflection peaks indicating hexagonal or cubic symmetry. According to TEM analysis, a long-range ordering of mesopores was not observed. More details on the texture properties and the morphology of alumina particles prepared by with changing the kinds of additives in spray solution were discussed.
- Cejka J, Appl. Catal. A: Gen., 254(2), 327 (2003)
- Fang XS, Ye CH, Xu XX, Xie T, Wu YC, Zhang LD, J. Phys.: Condens. Matter., 16, 4157 (2004)
- Chattopadhyay J, Kim CH, Kim RH, Pak DW, J. Ind. Eng. Chem., 15(1), 72 (2009)
- Kurien S, Mathew J, Sebastian S, Potty SN, George KC, Mater. Chem. Phys., 98(2-3), 470 (2006)
- Tian B, Liu X, Tu B, Yu C, Fan J, Wang L, Xie S, Stucky GD, Zhao D, Nat. Mater., 2, 159 (2003)
- Li D, Zhou H, Honma I, Nat. Mater., 3, 65 (2004)
- Yuan Q, Yin AX, Luo C, Sun LD, Zhang YW, Duan WT, Liu HC, Yan CH, J. Am. Chem. Soc., 130(11), 3465 (2008)
- Xu BJ, Xiao TC, Yan ZF, Sun X, Sloan J, Gonza´ lez-Corte´ s SL, Alshahrani F, Green MLH, Microporous Mesoporous Mater., 91, 293 (2006)
- Liu Q, Wang AQ, Wang XD, Zhang T, Microporous Mesoporous Mater., 92, 10 (2006)
- Niesz K, Yang P, Somorjai GA, Chem. Commun., 1986 (2005)
- Aguado J, Escola JM, Castro MC, Microporous Mesoporous Mater., 128, 48 (2010)
- Xu B, Long J, Tian H, Zhu Y, Sun X, Catal. Today., 147S, S46 (2009)
- Morris SM, Fulvio PF, Jaroniec M, J. Am. Chem. Soc., 130(45), 15210 (2008)
- Lu Y, Fan H, Stump A, Ward TL, Rieker T, Brinker CJ, Nature., 398, 223 (1999)
- Fan H, Swol FV, Lu Y, Brinker CJ, J. Non-Cryst. Solids., 285, 71 (2001)
- Rao GVR, Lopez GP, Bravo J, Pham H, Datye AK, Xu HF, Ward TL, Adv. Mater., 14(18), 1301 (2002)
- Bore MT, Rathod SB, Ward TL, Datye AK, Langmuir, 19(2), 256 (2003)
- Hampsey JE, Arsenault S, Hu Q, Lu Y, Chem. Mater., 17, 2475 (2005)
- Ray J, You KS, Ahn JW, Ahn WS, Microporous Mesoporous Mater., 100, 183 (2007)
- Kim JH, Jung KY, Park KY, Cho SB, Microporous Mesoporous Mater., 128, 85 (2010)
- Brunauer S, Deming US, Deming WS, Teller E, J. Am. Chem. Soc., 62, 1732 (1940)
- Pure Appl. Chem., IUPAC . Commission on Colloid and Surface Chemistry Including Catalysis, 57, 603 (1985)
- Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, 2nd ed., Academic Press, New York, NY, 160 (1982)
- Linden M, Schacht S, Schu¨ th F, J. Porous Mater., 5, 1773 (1998)
- Backlund S, Hoiland H, Kvammen OJ, Ljosland E, Acta Chem. Scand., A36, 698 (1982)
- Henriksson U, O¨ dbergm L, Eriksson HC, Westman L, J. Phys. Chem., 81, 76 (1977)
- Jung KY, Han KH, Electrochem. Solid State Lett., 8(2), H17 (2005)
- Jung KY, Kang YC, Park YK, J. Ind. Eng. Chem., 14(2), 224 (2008)
- Zhu ZH, Sha MJ, Lei MK, Thin Solid Film., 516, 5075 (2008)
- Valange S, Guth JL, Kolenda F, Lacombe S, Gabelica Z, Microporous Mesoporous Mater., 35-36, 597 (2000)
- Panias D, Krestou A, Powder Technol., 175(3), 163 (2007)
- Brinker CJ, Scherer GW, Sol.gel Science, Academic Press Inc., 61 (1990)