화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.8, 1004-1009, August, 2012
Approximate design and cost evaluation of internally heat-integrated distillation columns (HIDiCs)
E-mail:
Commercial design programs do not provide a ready-to-use process simulation of tray-by-tray heat-integrated distillation columns, so the computation of the columns using the programs is difficult due to their convergence problem. An approximate procedure for the design of the internally heat-integrated distillation column (HIDiC) is proposed here, and its performance of the design and cost evaluation is demonstrated with two example processes. The approximate design procedure eliminates the artificial heat exchangers and in-tray streams required in the design with the commercial programs, and therefore no information of the exchangers and streams is necessary except the amount of the in-tray heat transfer rate. The economic evaluation indicates that a reduction of the total annual cost of 8.1% is possible with benzene-toluene process and that 59.3% is yielded with the propylene-propane process. The results also demonstrate that the HIDiC is especially efficient for the tight separation system.
  1. King CJ, Separation processes, 2nd Ed., McGraw-Hill, New York (1980)
  2. Mah RSH, Wodnik RB, AIChE J., 23, 651 (1977)
  3. Nakaiwa M, Huang K, Endo A, Ohmori T, Akiya T, Takamatsu T, Chem. Eng. Res. Des., 81(1), 162 (2003)
  4. Kataoka K, Noda H, Yamaji H, Mukaida T, Kaneda M, Proceedings of the 8th world congress of chemical engineering, Montreal, Canada (2009)
  5. Kansha Y, Tsuru N, Sato K, Fushimi C, Tsutsumi A, Ind. Eng. Chem. Res., 48(16), 7682 (2009)
  6. Schmal JP, Van der Kooi HJ, De Rijke A, Olujic Z, Jansens PJ, Chem. Eng. Res. Des., 84(A5), 374 (2006)
  7. Huang KJ, Liu W, Ma JP, Wang SF, Ind. Eng. Chem. Res., 49(3), 1333 (2010)
  8. Wang Y, Huang KJ, Wang SF, Ind. Eng. Chem. Res., 49(7), 3349 (2010)
  9. Kim YH, Ind. Eng. Chem. Res., 50(9), 5733 (2011)
  10. Kim YH, Chem. Eng. Res. Des., 89(12A), 2495 (2011)
  11. Wolff EA, Skogestad S, Ind. Eng. Chem. Res., 34(6), 2094 (1995)
  12. Shah PB, Chem. Eng. Prog., 98(7), 46 (2002)
  13. Lee MY, Jeong SY, Kim YH, Korean J. Chem. Eng., 25(6), 1245 (2008)
  14. Lee MY, Choi DW, Kim YH, Korean J. Chem. Eng., 26(3), 631 (2009)
  15. Hwang KS, Kim BC, Kim YH, Korean J. Chem. Eng., 27(4), 1056 (2010)
  16. Lee SH, Shamsuzzoha M, Han M, Kim YH, Lee M, Korean J. Chem. Eng., 28(2), 348 (2011)
  17. Rivero R, Garcia M, Urquiza J, AAPG Bull., 29, 467 (2004)
  18. Schaller M, Hoffmann KH, Siragusa G, Salamon P, Andresen B, Comput. Chem. Eng., 25(11-12), 1537 (2001)
  19. de Koeijer G, Rivero R, Chem. Eng. Sci., 58(8), 1587 (2003)
  20. Olujic Z, Sun L, de Rijke A, Jansens PJ, Energy, 31(15), 3083 (2006)
  21. Olujic Z, Sun L, Gadalla M, de Rijke A, Jansens PJ, Chem.Biochem. Eng., 22, 383 (2008)
  22. Suphanit B, Energy, 35(3), 1505 (2010)
  23. Gadalla M, Jimenez L, Olujic Z, Jansens PJ, Comput. Chem. Eng., 31(10), 1346 (2007)
  24. Douglas JM, Conceptual design of chemical processes, McGraw-Hill, New York (1988)
  25. Kim YH, Luyben WL, Chem. Eng. Commun., 128, 65 (1994)