화학공학소재연구정보센터
Polymer(Korea), Vol.36, No.2, 235-244, March, 2012
Thiazole계 가황촉진제가 실란/실리카 충전 천연고무 컴파운드의 가황 거동 및 기계적 물성에 미치는 영향
Thiazole Type Accelerator Effects on Silane/Silica Filled Natural Rubber Compound upon Vulcanization and Mechanical Properties
E-mail:
초록
본 연구에서는 thiazole 계 촉진제인 2-mercapto benzothiazole(MBT)의 첨가량을 변화시켜(0, 1, 2, 3, 4 phr) 실란/실리카로 충전된 천연고무 컴파운드에 첨가하여 가황속도, 물성, 고무-충전제간 상호작용계수(αF), 가교밀도 및탄젠트 델타(tanδ)에 미치는 영향을 비교 평가하였다. 촉진제의 첨가량이 증가할수록 ts2, t90 가황시간은 빨라졌고 가교 밀도 및 300% 모듈러스는 증가하였다. 인장강도와 신장률 또한 증가하였으나 3 phr에서는 더 이상의 증가가 없었다. 그리고 상온에서의 tanδ 값은 70 ℃에서보다 높은 값을 나타내었다. 촉진제의 함량변화는 천연고무-실란/실리카간 상호관계(αF)에 큰 영향을 미치지 않는 것으로 관찰되었다. 가황속도에 미치는 메카니즘을 고찰하였다.
A thiazole type accelerator MBT (2-mercapto benzothiazole) was added into silica filled natural rubber (NR) compound with various concentrations (0, 1, 2, 3, 4 phr). The effects of MBT on the cure rate, mechanical property, degree of rubber-filler interaction (αF), crosslinking density, and viscoelastic property (tanδ) were investigated. As accelerator concentration increased, the ts2 and t90 decreased and the crosslinking density and modulus at 300% elongation increased. The tensile strength and elongation increased up to 3 phr and no further increased at 4 phr. The tan δ value measured at room temperature was higher than that of the 70 ℃. The αF value was not affected by the addition of MBT. The mechanisms for the vulcanization rate were reviewed.
  1. Goodyear C, U. S. Patent 3, 633 (1844)
  2. Oenslager G, Ind. Eng. Chem., 23, 232 (1933)
  3. Bateman L, Moore CG, Porter M, Saville B, in The Chemistry and Physics of Rubber like Substances, Bateman L, Editor, John Wiley and Sons, New York, Chapter, 19 (1963)
  4. Bedford CW, U. S. Patent 1,371,662 (1921)
  5. Sebrell LB, Bedford CW, U. S. Patent 1,544,687 (1925)
  6. Bruni G, Romani E, Indian Rubber Journal., 62, 18 (1921)
  7. Zaucker E, M. Bogemann, and L. Orthner, U. S. Patent 1,942,790 (1934)
  8. Andrew C, An Introduction to Rubber Technology, 2nd ed., Smithers Rapra Technology, Shawbury (1999)
  9. Loadman MJR, William CW, Analysis of Rubber and Rubber-like Polymers, Kluwer Acadamic Publishers, Norwell (1998)
  10. Lorenz O, Echte E, Rubber Chem. Technol., 31, 117 (1958)
  11. Scheele W, Cherubim M, Rubber Chem. Technol., 34, 606 (1961)
  12. Morita E, Young EJ, Rubber Chem. Technol., 36, 844 (1963)
  13. Bhatnagar SK, Banerjee S, Rubber Chem. Technol., 42, 1366 (1969)
  14. White JL, Kim KJ, Thermoplastic and Rubber Compounds, Hanser, Munich (2008)
  15. Wagner MP, Rubber Chem. Technol., 49, 703 (1976)
  16. Wolff S, Kautsch. Gummi Kunstst., 34, 280 (1981)
  17. Wolff S, Rubber Chem. Technol., 55, 967 (1982)
  18. Plueddemann EP, Silane Coupling Agents, Plenum Press, New York (1982)
  19. Kim KJ, VanderKooi J, Kautsch. Gummi Kunstst., 55, 518 (2002)
  20. Gupta RK, Kennal E, Kim KJ, Polymer Nanocomposites Handbook, CRC Press, Boca Raton (2009)
  21. Kim KJ, White JL, J. Ind. Eng. Chem., 7(1), 50 (2001)
  22. Kim KJ, Carbon Lett., 10, 109 (2009)
  23. Kim KJ, VanderKooi J, J. Ind. Eng. Chem., 10(5), 772 (2004)
  24. Kim KJ, VanderKooi J, Rubber Chem. Technol., 78, 84 (2005)
  25. Kim SM, Nam CS, Kim KJ, Appl. Chem. Eng., 22(2), 144 (2011)
  26. Coran AY, in Science and Technology of Rubber, 3rd ed., Mark JE, Erman B, Eirich FR, Editors, Academic Press, New York, Chapter 7 (2005)
  27. Wolff S, Rubber Chem. Technol., 69, 325 (1996)
  28. FloryPJ, Rehner J, Chem. Phys., 11, 521 (1943)
  29. Sheelan CJ, Basio AL, Rubber Chem. Technol., 39, 149 (1966)
  30. Payne AR, Rubber Plast. Age., 42, 963 (1961)
  31. Gent AN, Engineering with Rubber: How to Design Rubber Components, 2nd ed., Hanser, Munich (2001)
  32. Chapman AV, Porter M, in Natural Rubber Science and Technology, Roberts AD, Editor, Oxford University Press, Oxford (1988)
  33. Coleman MM, Shelton JR, Koening JK, Rubber Chem. Technol., 46, 938 (1973)
  34. Coran AY, Rubber Chem. Technol., 37, 679 (1964)
  35. Gradwell MH, Mcgill WJ, J. Appl. Polym. Sci., 58(12), 2193 (1995)
  36. Kruger FWH, McGill WJ, J. Appl. Polym. Sci., 42, 2643 (1991)
  37. Ghosh P, Katare S, Patkar P, Caruthers JM, Venkatasubramanian V, Rubber Chem. Technol., 76, 592 (2003)
  38. Gradwell MH, Mcgill WJ, J. Appl. Polym. Sci., 51(1), 169 (1994)
  39. Guryanova EN, Q. Rep. Sulfur. Chem., 5, 113 (1970)
  40. Lamar F, in Organic Chemistry of Sulfur, Oae S, Editor, Plenum Press, New York (1977)
  41. Nieuwenhuizen PJ, Ehlers AW, Hofstraat JW, Janse SR, Nielen MWF, Reedijik J, Baerends EJ, Chem.-Eur. J., 4, 1816 (1998)
  42. Morrison NJ, Porter M, Rubber Chem. Technol., 57, 63 (1984)
  43. Moore CG, Trego BR, J. Appl. Polym. Sci., 8, 1957 (1964)
  44. Layer RB, Rubber Chem. Technol., 65, 211 (1992)
  45. Layer RB, Rubber Chem. Technol., 65, 822 (1992)
  46. Andreis M, Liu J, Koenig JL, J. Appl. Polym. Sci., Polym. Phys. Ed., 27, 1389 (1989)
  47. Choi C, Kim SM, Park YH, Jang MK, Nah JW, Kim KJ, Appl. Chem. Eng., 22(4), 411 (2011)
  48. Kim SM, Kim KJ, Korean Society of Industrial and Engineering Chemistry Spring Meeting, ICC JEJU, Jeju, Korea, May (2012)
  49. Kim SM, Kim KJ, Korean Institute of Rubber Industry Spring Meeting, University of Suwon, Korea, March (2012)
  50. Kim SM, Kim KJ, Adv. Polym. Tech., submitted (2012)