Journal of Industrial and Engineering Chemistry, Vol.18, No.4, 1482-1488, July, 2012
Adsorption of cationic cetylpyridinium chloride on pyrite surface
E-mail:
Adsorption of cetylpyridinium chloride (CPC), a cationic surfactant, on pyrite surface was investigated in its suspension. Maximum adsorption capacity of pyrite for CPC was 357 mmol kg^(-1) in pyrite suspension (4 g L^(-1)) at pH 7 equilibrated with CPC (0.1-1.8 mmol L^(-1)). As CPC adsorption proceeded in the suspension at pH < 7, zeta potential (z) of pyrite surface showed increasing positive values (i.e. 5-18.5 mV at pH 5 and 8.12-26 mV at pH 6). However, at pH ≥ 7, it changed from negative to positive value (i.e. -5 to 36 mV at pH 7, -10 to 30 mV at pH 8, and 15 to 20 mV at pH 9), indicating three different isoelectric points at each pH. Adsorption isotherms at suspension pH 5 and 7 with NaCl (0.01 and 0.1 M) showed a decreasing pattern in CPC adsorption capacity. Zeta potential of pyrite surface changed from positive to negative value by the addition of NaCl (21 to -16 mV at pH 5 and 5 to -22 mV at pH 7). This study provides basic understanding of the adsorption mechanism of cationic surfactant on pyrite surface at different pH conditions when surfactant wastewater and contaminated groundwater need to be treated by the reactive iron sulfide.
- Rosen MJ, Surfactants and Interfacial Phenomena, John Wiley & Sons, New York (1989)
- Wu SH, Pendleton P, J. Colloid Interface Sci., 243(2), 306 (2001)
- Reis MJ, Silve´ rio F, Tronto J, Valim JB, J. Phys. Chem. Solids., 65, 487 (2004)
- Ying GG, Environ. Int., 32, 417 (2006)
- Singh RP, Gupta N, Singh S, Singh A, Suman R, Annie K, Bull. Environ. Contam.Toxicol., 69, 265 (2002)
- Renner R, Environ. Sci. Technol., 31, 316A (1997)
- Gu L, Wang B, Ma HZ, Kong WP, J. Hazard. Mater., 137(2), 842 (2006)
- Saleh MM, Water Res., 40, 1052 (2006)
- Sabah E, Turan M, Celik MS, Water Res., 36, 3957 (2002)
- Vanjara AK, Dixit SG, Langmuir, 11(7), 2504 (1995)
- Goloub TP, Koopal LK, Bijsterbosch BH, Sidorova MP, Langmuir, 12(13), 3188 (1996)
- Garcia-Delgado RA, Cotoruelo-Minguez LM, Rodriguez JJ, Sep. Sci. Technol., 27(7), 975 (1992)
- Wu SH, Pendleton P, J. Colloid Interface Sci., 243(2), 306 (2001)
- Pavan PC, Crepaldi EL, Valim JB, J. Colloid Interface Sci., 229(2), 346 (2000)
- Shen YH, Chemosphere., 41, 711 (2000)
- Holmes PR, Crundwell FK, Geochim. Cosmochim. Acta., 64, 263 (1999)
- Murphy R, Strongin DR, Surf. Sci., 64, 1 (2009)
- Mikhlin YL, Romanchenko AS, Geochim. Cosmochim. Acta., 71, 5985 (2007)
- Demoisson F, Mullet BHM, Surf. Interface Anal., 40, 343 (2008)
- Xu N, Christodoulatos C, Braida W, Chemosphere., 62, 1726 (2006)
- Jean GE, Bancroft GM, Geochim. Cosmochim. Acta., 50, 1455 (1986)
- Das DK, Pathak PN, Kumar S, Manchanda VK, J. Radioanal. Nucl. Chem., 281, 449 (2009)
- Wang Z, Xie X, Xiao S, Liu J, Hydrometallurgy., 102, 87 (2010)
- Szargan R, Karthe S, Appl. Surf. Sci., 227 (1992)
- Zhang X, Borda MJ, Schoonen MAA, Strongin DR, Langmuir, 19(21), 8787 (2003)
- Hoal PT, Sutol K, lnouel C, Hara J, Water dynamics, in: 4th International Workshop on Water Dynamics, 12 (2007)
- Li Z, Bowman RS, Environ. Sci. Technol., 31, 2407 (1997)
- Weerasooriya R, Tobschall HJ, Colloids Surf. A., 264, 68 (2005)
- Pavan PC, Crepaldi EL, Gomes GD, Valim JB, Colloids Surf. A., 154, 399 (1999)
- Buckley AN, Woods R, Appl. Surf. Sci., 27, 437 (1987)
- Zhu X, Li J, Bodily DM, Wadsworth ME, J. Electrochem. Soc., 140, 1927 (1993)
- Todd EC, Sherman DM, Purton JA, Geochim. Cosmochim. Acta., 67, 881 (2003)
- Valdivieso AL, Cervantes TC, Song S, Cabrera AR, Laskowskim JS, Miner. Eng., 17, 1001 (2004)
- Borah D, Senapati K, Fuel., 85, 1929 (2006)
- Cheung CW, Porter JF, McKay G, Sep. Purif. Technol., 19(1-2), 55 (2000)
- Strubbe F, Beunis F, Neyts K, J. Colloid Interface Sci., 301(1), 302 (2006)
- Che H, Bae S, Lee W, J. Hazard. Mater., 185(2-3), 1355 (2011)
- Che H, Lee W, Chemosphere., 82, 1103 (2011)