- Previous Article
- Next Article
- Table of Contents
Korean Journal of Rheology, Vol.7, No.2, 158-167, August, 1995
젤방사, 열연신 방법에 의한 고강력, 고탄성률 섬유고분자재료의 개발
Development of High Strength and High Modulus Polymeric Materials by Using Gel Spinning and Hot Drawing - Effects of the Gelation/crystallization Temperatures on the Physical Properties of Ultra High Molecular Weight Polyethylene Gel-spun Fibers
초록
농도 5 wt%의 초고분자량 폴리에틸렌(분자량 : 1.5×106)을 상온으로 냉각시켜 젤을 만들고 이를 방사하여 섬유를 제조하였다. 이 때 방사구를 나온 섬유를 0℃에서 90℃까지의 냉각조를 통과시켜 젤화/결정화 온도를 다르게 하였다. 최대 연신비는 온도가 0℃에서 70℃까지 증가함에 따라서 증가하고, 90℃에서 젤화/결정화시킨 섬유의 경우에는 감소한다. 시차 주사 열분석, 배향 인자, 복굴절률, 절단 강도와 탄성률을 측정하여 섬유의 물성에 대해 고찰하였다. 연신비의 증가에 따른 결정화도, 용융 온도, 복굴절률의 증가는 높은 온도에서 젤화/결정화시킨 섬유인 경우가 더 뚜렷했다.
Fibers of ultra high molecular weight (Mw : 1.5×106) polyethylene were prepared by gelation/crystallization from 5 wt% paraffin oil solution at various temperatures such as 0, 30, 50, 70 and 90℃. The maximum draw ratio attained increased as the temperature increased from 0℃ to 70℃ and then it decreased for the fibers prepared by gelation/crystallization at 90℃. The properties of the fibers were discussed with the results of differential scanning calorimetry, orientation factor, birefringence, breaking stress and tensile modulus. The increase in crystallinity, melting temperature, orientation factor and birefringence with increasing draw ratio were more significant for the fibers prepared at higher gelation/crystallization temperatures. This phenomenon is thought to be due to the dependence of the number of entanglements on the gelation/crystallization temperatures.
Keywords:UHMWPE gel-spun fibers;gelation/crystallization temperature;maximum draw ratio;entanglement
- Black WB, Annu. Rev. Mater. Sci., 10, 311 (1980)
- Ohta T, Polym. Eng. Sci., 23, 697 (1983)
- Wu W, Black WB, Polym. Eng. Sci., 19, 1169 (1979)
- Zachariades A, Porter RS, "The Strength and Stiffness of Polymer," Marcell Dekker Inc. (1983)
- 지병철, 김상용, PPS. Int. Meeting, 141 (1990)
- Kanamoto T, Zachariades AE, Porter RS, J. Polym. Sci. B: Polym. Phys., 17, 2171 (1979)
- Barham PJ, Keller A, J. Mater. Sci., 15, 2229 (1980)
- Oh TH, Shim HJ, Kim SY, Korean J. Rheol., 5(2), 149 (1993)
- Smith P, Lemstra PJ, Kalb B, Pennings AJ, Polym. Bull., 1, 733 (1979)
- Smith P, Lemstra PJ, Colloid Polym. Sci., 258, 89 (1980)
- Smith P, Lemstra PJ, Booij HC, J. Polym. Sci. B: Polym. Phys., 19, 807 (1981)
- Smith P, Lemstra PJ, Pijpers JPL, Kiel AM, Colloid Polym. Sci., 259, 1070 (1981)
- 장복남, 김상용, 한국섬유공학회지, 30, 162 (1993)
- Capaccio G, Ward IM, Polym. Eng. Sci., 15, 219 (1975)
- Flory PJ, J. Chem. Phys., 15, 6 (1947)
- Smook J, Pennings AJ, Colloid Polym. Sci., 262, 712 (1984)
- Anandakumaran K, Roy SK, Manley RJ, Macromolecules, 21, 1746 (1988)
- Gopalan M, Mandelkern L, J. Phys. Chem., 71, 3833 (1967)
- Gopalan AJ, Zwijnenburg A, J. Polym. Sci. B: Polym. Phys., 17, 1011 (1979)
- Ogita T, Kawahara Y, Soga Y, Matsuo M, Colloid Polym. Sci., 270, 833 (1992)