화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.52, No.1, 58-62, February, 2014
Pt/GDC/Pt 셀을 이용한 물과 질소로부터 전기화학적 암모니아 합성
Electrochemical Synthesis of Ammonia from Water and Nitrogen using a Pt/GDC/Pt Cell
E-mail:
초록
본 연구에서는 Pt/GDC/Pt 셀을 이용하여 상압에서 물과 질소로부터 전기화학적으로 암모니아를 합성하는 연구를 수행하였다. 수분이 포화된 질소분위기에서 작동온도(400~600 ℃)와 전압(OCV(Open Circuit Voltage)~1.2 V)에 대한 전기화학적 특성 평가를 수행하였고, 암모니아 합성량을 정량 분석하였다. 정전압 하에서 작동온도의 증가에 따라 인가 전류의 증가로 암모니아 합성량은 증가하였으나, Pt 전극에서 암모니아 합성에 필요한 질소의 화학적 해리 흡착 반응의 한계로 패러데이 효율(faradaic efficiency)은 감소하였다. 600 ℃에서 최대 암모니아 합성량인 3.67×10^(-11) mols^(-1)cm^(-2) (6.7 mA) 얻었고 패러데이 효율은 0.1%이다.
Electrochemical ammonia synthesis from water and nitrogen using a Pt/GDC/Pt cell was experimentally investigated. Electrochemical analysis and ammonia synthesis in the moisture-saturated nitrogen environment were performed under the operating temperature range 400~600 ℃ and the applied potential range OCV (Open Circuit Voltage)-1.2V. Even though the ammonia synthesis rate was augmented with the increase in the operating temperature (i.e. increase in the applied current) under the constant potential, the faradaic efficiency was decreased because of the limitation of dissociative chemisorption of nitrogen on the Pt electrode. The maximum synthesis rate of ammonia was 3.67×10^(-11) mols^(-1)cm^(-2) with 0.1% faradaic efficiency at 600 ℃.
  1. Amar IA, Lan R, Petit CTG, Tao S, J. Solid State Electrochem., 15, 1845 (2011)
  2. Lan R, Irvine TS, Tao S, Int. J. Hydrog. Energy, 37, 1482 (2008)
  3. Klerke A, Christensen CH, Norskov JK, Vegge T, J. Mater Chem, 18, 2304 (2008)
  4. Sifer N, Gardner K, J. Power Sources, 8, 132 (2004)
  5. MacKenzie JJ, Avery WH, IECEC 96, 3, 1761 (1996)
  6. Zamfirescu C, Dincer I, J. Power Sources, 65, 185 (2008)
  7. Schlogl R, Angew. Chem.-Int. Edit., 8, 42 (2003)
  8. Charles N, AIChE J., 27, 174 (1981)
  9. Rafiqul I, Weber C, Lehmann B, Voss A, Energy, 30(13), 2487 (2005)
  10. Farla JCM, Hendriks CA, Blok K, AJCC, 29, 439 (1995)
  11. Li Z, Liu R, Xie Y, Feng S, Wang J, Solid State Ion., 176, 1063 (2005)
  12. Marnellos G, J. Catal., 193, 80 (2000)
  13. Wang JD, Xie YH, Zhang ZF, Liu RQ, Li ZH, Mater. Res. Bull., 40(8), 1294 (2005)
  14. Skodra A, Stoukides M, Solid State Ion., 180(23-25), 1332 (2009)
  15. Kordali V, Kyriacou G, Lambrou C, “Electrochemical Synthesis of Ammonia at Atmospheric Pressure and Low Temperature in a Solid Polymer Electrolyte Cell,” Chem. Commun., 1673-1674 (2000)
  16. Kreuer KD, Solid State Ion., 97(1-4), 1 (1997)
  17. Kim JH, Park YM, Kim T, Kim H, Korean J. Chem. Eng., 29(3), 349 (2012)
  18. Kim DG, Song M, Lee KS, Kim YS, Kim YS, Shin HS, Korean Chem. Eng. Res., 49(6), 781 (2011)
  19. Ivancic I, Water Res., 18, 1143 (1984)
  20. Amar IA, Petit CTG, Zhang L, Lan R, Skabara PJ, Tao S, Solid State Ion., 201(1), 94 (2011)
  21. Aika KI, Ozaki A, J. Catal., 14, 311 (1969)
  22. Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen CH, Norskov JK, AAAS, 307, 555 (2005)
  23. Ouzounidou M, Skodra A, Kokkofitis C, Stoukides M, Solid State Ion., 178, 153 (2007)