Applied Chemistry for Engineering, Vol.25, No.3, 292-299, June, 2014
암모니아수 처리에 따른 바나듐 레독스 흐름전지용 탄소펠트 전극의 전기화학적 특성
Electrochemical Properties of Carbon Felt Electrode for Vanadium Redox Flow Batteries by Liquid Ammonia Treatment
E-mail:
초록
본 연구에서는 바나듐 레독스 흐름전지의 효율을 향상시키고자 탄소펠트에 열산화 반응과 암모니아수 처리를 이용하여 질소가 도핑된 탄소펠트 전극을 제조하였다. 또한 제조된 탄소펠트 전극의 전기화학적 특성평가를 위하여 CV 실험 및 충/방전 실험을 실시하였다. 암모니아수 처리온도가 증가함에 따라 탄소펠트 표면의 질소 관능기가 증가함을 XPS를 통하여 확인하였으며, CV 측정 결과 암모니아수 처리된 탄소펠트는 열산화된 탄소펠트에 비하여 산화/환원의 반응성이 우수함을 확인하였다. 충/방전 실험결과 300 ℃에서 암모니아수 처리한 탄소펠트 전극은 열산화된 탄소펠트 전극보다 에너지효율, 전압효율, 전류효율이 각각 약 6.93, 1.0, 4.5%씩 향상됨을 알 수 있었다. 이는 질소 관능기가 탄소펠트 전극과 전해질 사이의 전기화학적 성능 향상에 도움을 주었기 때문으로 사료된다.
In this study, nitrogen doped carbon felt (CFt) is prepared using thermal oxidation and liquid phase ammonia treatment to improve the efficiency for vanadium redox flow batteries (VRFB). The electrochemical properties of prepared CFt electrodes are investigated using cyclic voltammetry (CV) and charge/discharge test. The XPS result shows that the increase of liquid
phase ammonia treatment temperature leads to the increased nitrogen functional group on the CFt surface. Redox reaction characteristics using CV reveal that the liquid phase ammonia treated CFt electrodes are more reversible than the thermally oxidized CFt. When CFt is treated by the liquid phase ammonia at 300 ℃, VRFB cell energy efficiency, voltage efficiency, and current efficiency are increased about 6.93%, 1.0%, and 4.5%, respectively, compared to those of the thermally oxidized CFt. These results are because nitrogen functional groups on CFt help to improve the electrochemical properties of redox reaction between electrode and electrolyte interface.
Keywords:carbon felt;nitrogen doping;liquid phase ammonia treatment;redox reaction;vanadium redox flow batteries
- Alotto P, Guarnieri M, Moro F, Renew. Sust. Energ. Rew., 29, 325 (2014)
- de Leon CP, Frias-Ferrer A, Gonzalez-Garcia J, Szanto DA, Walsh FC, J. Power Sources, 160(1), 716 (2006)
- Blasi AD, Blasi OD, Briguglio N, Aricoa AS, Sebastian D, Lazaro MJ, Monforte G, Antonucci V, J. Power Sources, 227, 15 (2013)
- Zhao P, Zhang HM, Zhou HT, Chen J, Gao SJ, Yi BL, J. Power Sources, 162(2), 1416 (2006)
- Zhu HQ, Zhang YM, Yue L, Li WS, Li GL, Shu D, Chen HY, J. Power Sources, 184(2), 637 (2008)
- Kim JC, Ryu CH, Kang AS, Appl. Chem. Eng., 12, 517 (2001)
- Kim HS, Bull. Korean Chem. Soc., 32, 571 (2011)
- Kaneko H, Nozaki K, Wada Y, Aoki T, Negishi A, Kamimoto M, Electrochim. Acta, 36, 1191 (1991)
- Zhou HT, Zhang HM, Zhao P, Yi BL, Electrochim. Acta, 51(28), 6304 (2006)
- Xue FQ, Zhang HT, Wu CX, Ning T, Xu X, Trans. Nonferrous Met. Soc. China, 19, 594 (2009)
- Gonzalez Z, Sanchez A, Blanco C, Granda M, Menendez R, Santamaria R, Electrochem. Commun., 13, 1379 (2011)
- Gao C, Wang N, Peng S, Liu S, Lei Y, Liang X, Zeng S, Zi H, Electrochim. Acta, 88, 193 (2013)
- Maldonado S, Stevenson KJ, J. Phys. Chem. B, 109(10), 4707 (2005)
- Kim ND, Kim W, Joo JB, Oh S, Kim P, Kim Y, Yi J, J. Power Sources, 180(1), 671 (2008)
- Sun B, Kazacos MS, Electrochim. Acta, 37, 2459 (1992)
- Tseng TM, Huang RH, Huang CY, Hsueh KL, Shieu FS, J. Electrochem. Soc., 160, 1269 (2013)
- Kim KJ, Kim YJ, Kim JH, Park MS, Mater. Chem. Phys., 131(1-2), 547 (2011)
- Xu L, Guo J, Jin F, Zeng H, Chemosphere., 62, 823 (2006)
- Jeong E, Jung MJ, Lee YS, J. Fluorine Chem., 150, 98 (2013)
- Popov C, Plass MF, Bergmaier A, Kulisch W, Appl. Phys. A., 69, 241 (1999)
- Bai BC, Cho S, Yu HR, Yi KB, Kim KD, Lee YS, J. Ind. Eng. Chem., 19(3), 776 (2013)
- Yue L, Li W, Sun F, Zhao L, Xing L, Carbon, 48, 3079 (2010)
- Sun B, Kazacos MS, Electrochim. Acta, 37, 2459 (1992)
- lez ZG, Botas C, Alvarez P, Roldan S, Blanco C, Santamaria R, Granda M, Menendez R, Carbon, 50, 828 (2012)
- Han P, Wang H, Liu Z, Chen X, Ma W, Yao J, Zhu Y, Cui G, Carbon, 49, 693 (2011)
- Muraoka M, Tomonaga H, Nagai M, Fuel, 97, 211 (2012)
- Mou ZG, Chen XY, Du YK, Wang XM, Yang P, Wang SD, Appl. Surf. Sci., 258(5), 1704 (2011)
- Matter PH, Zhang L, Ozkan US, J. Catal., 239(1), 83 (2006)
- Arrigo R, Havecker M, Schlogl R, Su DS, Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes, Chem. Commun., 4891-4893 (2008)
- Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM, Carbon, 33, 1641 (1995)
- Seredych M, Jurcakova DH, Lu GO, Bandosz TJ, Carbon, 46, 1475 (2008)
- Lim JW, Jeong E, Jung MJ, Lee SI, Lee YS, J. Ind. Eng. Chem., 18(1), 116 (2012)
- Shao YY, Wang XQ, Engelhard M, Wang CM, Dai S, Liu J, Yang ZG, Lin YH, J. Power Sources, 195(13), 4375 (2010)
- Ha D, Kim SK, Jung D, Lim S, Peck DH, Lee B, Lee K, J. Korean Electrochem. Soc., 12, 263 (2009)
- Wu T, Huang K, Liu S, Zhuang S, Fang D, Li S, Lu D, Su A, J. Solid state Electrochem., 16, 579 (2012)
- Kim J, Choi M, Ryoo R, Bull. Korea Chem. Soc., 29, 413 (2008)
- Jung MJ, Jeong E, Cho S, Yeo SY, Lee YS, J. Colloid Interf. Sci., 381, 152 (2012)
- Pell WG, Conway BE, Marincic N, J. Electroanal. Chem., 491(1-2), 9 (2000)