화학공학소재연구정보센터
Clean Technology, Vol.20, No.2, 154-159, June, 2014
다이메틸설폭시화물 용매를 사용한 PVC-LMO 비드의 제조와 리튬 이온 흡착 특성
Preparation of PVC-LMO Beads Using Dimethyl Sulfoxide Solvent and Adsorption Characteristics of Lithium Ions
E-mail:
초록
본 연구에서는 노말 메틸 피로리돈(N-methyl-2-pyrrolidone, NMP)을 대신하여 다이메틸설폭시화물(dimethyl sulfoxide,DMSO)을 용매로 사용하여 폴리염화비닐 (poly vinyl chloride, PVC)로 리튬망간산화물(lithium manganese oxide, LMO)를 고정화하여 PVC-LMO 비드를 제조하였다. XRD 분석을 통해 PVC-LMO 비드내에 LMO가 잘 고정화 된 것을 확인 하였다. 합성한 PVC-LMO 비드의 크기는 약 4 mm였다. PVC-LMO 비드에 의한 리튬이온 흡착 실험은 회분식으로 수행하였다. 랭뮤어 모델식으로 부터 구한 최대 흡착량은 21.31 mg/g였다. PVC-LMO 비드에 의한 리튬이온 흡착특성은 유사 2차 속도모델식으로 잘 설명되었으며, 내부확산 단계가 흡착속도 결정단계인 것으로 사료되었다.
In this study, PVC-LMO beads were prepared by immobilizing lithium manganese oxide (LMO) with poly vinyl chloride (PVC) diluted in dimethyl sulfoxide (DMSO) solvent on behalf of N-methyl-2-pyrrolidone (NMP). XRD analysis confirmed that LMO was immobilized well in PVC-LMO beads. The diameter of PVC-LMO beads synthesized by DMSO was about 4 mm. The adsorption experiments of lithium ions by PVC-LMO beads were conducted batchwise. The maximum adsorption capacity obtained from Langmuir model was 21.31 mg/g. The adsorption characteristics of lithium ions by PVC-LMO beads was well described by the pseudo-second-order kinetic model. It was considered that the internal diffusion was the rate controlling step.
  1. Chitrakar R, Kanoh H, Miyai Y, Ooi K, Ind. Eng. Chem. Res., 40(9), 2054 (2001)
  2. Xia Y, Friese JI, Bachelor PP, Moore DA, Rao L, J. Radioanal. Nucl. Chem., 280, 599 (2009)
  3. Kim YS, In G, Choi JM, Kor. Chem. Soc., 24, 1490 (2003)
  4. Zhang QH, Sun SY, Li SP, Jiang H, Yu JG, Chem. Eng. Sci., 62(18-20), 4869 (2007)
  5. Wang L, Ma W, Liu R, Li HY, Meng CG, Solid State Ion., 177(17-18), 1421 (2006)
  6. Yang WW, Luo GS, Gong XC, Sep. Purif. Technol., 43(2), 175 (2005)
  7. Huang GL, Shi JX, Langrish TAG, Chem. Eng. J., 152(2-3), 434 (2009)
  8. Seron A, Benaddi H. Beguin F, Frackowiak E, Bretelle JL, Thiry MC, Bandosz TJ, Jagiello J, Schwarz JA, Carbon, 34, 481 (1996)
  9. Park JM, Kam SK, Lee MG, J. Environ. Sci. Int., 22, 1651 (2013)
  10. Pan B, Zhang Q, Du W, Zhang W, Pan B, Zhang Q, Xu Z, Zhang Q, Water Res,, 41, 3103 (2007)
  11. Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X, Water Res., 39, 2327 (2005)
  12. Ma LW, Chen BZ, Chen Y, Shi XC, Micro. Meso. Mater., 142, 147 (2011)
  13. You HN, Lee DH, Lee MG, Clean Technol., 19(4), 446 (2013)
  14. Han YS, Kim HJ, Park JK, Chem. Eng. J., 210, 482 (2012)
  15. Kitajou A, Suzuki T, Nishihama S, Yoshizuka K, Ars. Sep. Acta, 2, 97 (2003)
  16. Umeno A, Miyai Y, Takagi N, Chitrakar R, Sakane K, Ooi K, Ind. Eng. Chem. Res., 41(17), 4281 (2002)
  17. Xiao GP, Tong KF, Zhou LS, Xiao JL, Sun SY, Li P, Yu JG, Ind. Eng. Chem. Res., 51(33), 10921 (2012)
  18. Xu JA, Xu ZL, J. Membr. Sci., 208(1-2), 203 (2002)
  19. Science Lab, http://www.sciencelab.com/msds.php?msdsId = 9923813.
  20. Science Lab, http://www.sciencelab.com/msds.php?msdsId = 9926094
  21. Subramania A, Angayarkanni N, Vasudevan T, Mater. Chem. Phys., 102(1), 19 (2007)
  22. Lee MG, Kam SK, Suh KH, J. Environ. Sci., 21, 623 (2012)
  23. Hamdaoui O, J. Hazard. Mater., 135(1-3), 264 (2006)