Clean Technology, Vol.20, No.2, 154-159, June, 2014
다이메틸설폭시화물 용매를 사용한 PVC-LMO 비드의 제조와 리튬 이온 흡착 특성
Preparation of PVC-LMO Beads Using Dimethyl Sulfoxide Solvent and Adsorption Characteristics of Lithium Ions
E-mail:
초록
본 연구에서는 노말 메틸 피로리돈(N-methyl-2-pyrrolidone, NMP)을 대신하여 다이메틸설폭시화물(dimethyl sulfoxide,DMSO)을 용매로 사용하여 폴리염화비닐 (poly vinyl chloride, PVC)로 리튬망간산화물(lithium manganese oxide, LMO)를 고정화하여 PVC-LMO 비드를 제조하였다. XRD 분석을 통해 PVC-LMO 비드내에 LMO가 잘 고정화 된 것을 확인 하였다. 합성한 PVC-LMO 비드의 크기는 약 4 mm였다. PVC-LMO 비드에 의한 리튬이온 흡착 실험은 회분식으로 수행하였다. 랭뮤어 모델식으로 부터 구한 최대 흡착량은 21.31 mg/g였다. PVC-LMO 비드에 의한 리튬이온 흡착특성은 유사 2차 속도모델식으로 잘 설명되었으며, 내부확산 단계가 흡착속도 결정단계인 것으로 사료되었다.
In this study, PVC-LMO beads were prepared by immobilizing lithium manganese oxide (LMO) with poly vinyl chloride (PVC) diluted in dimethyl sulfoxide (DMSO) solvent on behalf of N-methyl-2-pyrrolidone (NMP). XRD analysis confirmed that LMO was immobilized well in PVC-LMO beads. The diameter of PVC-LMO beads synthesized by DMSO was about 4 mm. The adsorption experiments of lithium ions by PVC-LMO beads were conducted batchwise. The maximum adsorption capacity obtained from Langmuir model was 21.31 mg/g. The adsorption characteristics of lithium ions by PVC-LMO beads was well described by the pseudo-second-order kinetic model. It was considered that the internal diffusion was the rate controlling step.
Keywords:Poly vinyl chloride (PVC);Lithium manganese oxide (LMO);Adsorption;Lithium;Dimethyl sulfoxide
- Chitrakar R, Kanoh H, Miyai Y, Ooi K, Ind. Eng. Chem. Res., 40(9), 2054 (2001)
- Xia Y, Friese JI, Bachelor PP, Moore DA, Rao L, J. Radioanal. Nucl. Chem., 280, 599 (2009)
- Kim YS, In G, Choi JM, Kor. Chem. Soc., 24, 1490 (2003)
- Zhang QH, Sun SY, Li SP, Jiang H, Yu JG, Chem. Eng. Sci., 62(18-20), 4869 (2007)
- Wang L, Ma W, Liu R, Li HY, Meng CG, Solid State Ion., 177(17-18), 1421 (2006)
- Yang WW, Luo GS, Gong XC, Sep. Purif. Technol., 43(2), 175 (2005)
- Huang GL, Shi JX, Langrish TAG, Chem. Eng. J., 152(2-3), 434 (2009)
- Seron A, Benaddi H. Beguin F, Frackowiak E, Bretelle JL, Thiry MC, Bandosz TJ, Jagiello J, Schwarz JA, Carbon, 34, 481 (1996)
- Park JM, Kam SK, Lee MG, J. Environ. Sci. Int., 22, 1651 (2013)
- Pan B, Zhang Q, Du W, Zhang W, Pan B, Zhang Q, Xu Z, Zhang Q, Water Res,, 41, 3103 (2007)
- Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X, Water Res., 39, 2327 (2005)
- Ma LW, Chen BZ, Chen Y, Shi XC, Micro. Meso. Mater., 142, 147 (2011)
- You HN, Lee DH, Lee MG, Clean Technol., 19(4), 446 (2013)
- Han YS, Kim HJ, Park JK, Chem. Eng. J., 210, 482 (2012)
- Kitajou A, Suzuki T, Nishihama S, Yoshizuka K, Ars. Sep. Acta, 2, 97 (2003)
- Umeno A, Miyai Y, Takagi N, Chitrakar R, Sakane K, Ooi K, Ind. Eng. Chem. Res., 41(17), 4281 (2002)
- Xiao GP, Tong KF, Zhou LS, Xiao JL, Sun SY, Li P, Yu JG, Ind. Eng. Chem. Res., 51(33), 10921 (2012)
- Xu JA, Xu ZL, J. Membr. Sci., 208(1-2), 203 (2002)
- Science Lab, http://www.sciencelab.com/msds.php?msdsId = 9923813.
- Science Lab, http://www.sciencelab.com/msds.php?msdsId = 9926094
- Subramania A, Angayarkanni N, Vasudevan T, Mater. Chem. Phys., 102(1), 19 (2007)
- Lee MG, Kam SK, Suh KH, J. Environ. Sci., 21, 623 (2012)
- Hamdaoui O, J. Hazard. Mater., 135(1-3), 264 (2006)