Clean Technology, Vol.20, No.2, 146-153, June, 2014
알카놀아민 첨가제가 K2CO3 수용액의 이산화탄소 흡수속도와 염 석출에 미치는 영향
Effect of Alkanolamine Additives on CO2 Absorption Rate and Salt Formation of K2CO3 Aqueous Solution
E-mail:,
초록
본 연구에서는 입체장애 알카놀아민 첨가제인 2-아미노-2-메틸-1-프로판올(2-amino-2-methyl-1-propanol, AMP)과 2-아미노-2-메틸-1,3-프로판디올(amino-2-methyl-1,3-propanediol, AMPD)가 K2CO3 흡수액의 이산화탄소 흡수속도와 KHCO3 고체염의 석출에 미치는 영향에 대해 고찰하였다. 흡수온도 40 ℃와 60 ℃에서 wetted-wall column을 이용하여 흡수속도와 이산화탄소 평형분압을 측정한 결과, 30 wt%의 고농도 K2CO3에 대해 5 wt% AMP와 AMPD는 흡수속도를 증가시키는 동시에 평형분압을 감소시켜, 흡수촉진제로서 흡수성능을 향상시키는 것으로 확인되었다. 또한, 회분식 냉각결정화 실험 결과, 복수의 히드록실기를 포함하는 AMPD가 흡수액을 냉각시 석출되는 KHCO3 고체염의 양을 증가시키는 것으로 나타났다.
In this study, the effect of alkanolamine additives, 2-amino-2-methyl-1-propanol (AMP) and 2-amino-2-methyl-1,3-propanediol (AMPD) on CO2 absorption rate of K2CO3 solution and the formation of KHCO3 crystals was investigated. The normalized CO2 flux and the equilibrium CO2 partial pressure were measured for 5 wt% additives and 30 wt% K2CO3 mixtures using a wetted-wall column unit at 40 ℃ and 60 ℃. Both additives showed the increased CO2 absorption rate and lowered the equilibrium CO2 partial pressure acting as promoters. Besides, AMPD which has two hydroxyl groups enhanced the formation of KHCO3 solid product separated from the CO2-rich solution from the results of batch cooling crystallization experiments.
- Boot-Handford ME, et al, Energy Environ. Sci., 7, 130 (2014)
- Zaman M, Lee JH, Korean J. Chem. Eng., 30(8), 1497 (2013)
- Bhown A, Freeman B, Environ. Sci. Technol., 45, 8624 (2011)
- Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Chem. Eng. Res. Des., 89(9A), 1609 (2011)
- Savage DW, Astarita G, Joshi S, Chem. Eng. Sci., 35, 1513 (1980)
- Knuutila H, Juliussen O, Svendsen HF, Chem. Eng. Sci., 65(23), 6077 (2010)
- Svendsen HF, Hessen ET, Mejdell T, Chem. Eng. J., 171(3), 718 (2011)
- Artanto Y, Jansen J, Pearson P, Do T, Cottrell A, Meuleman E, Feron P, Fuel, 101, 264 (2012)
- Hu L, “Methods and Systems for Deacidizing Gaseous Mixtures," US Patent No. 7,718,151 B1 (2010)
- NETL, “Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO2 Capture,” Project No.: DE-FE0004360. http://www.netl.doe.gov/ (2013)
- Endo K, Stevens G, Hooper B, Kentish SE, “A Process and Plant for Removing Acid Gases,” WO Patent No. 2011/130796 A1 (2011)
- Kaldi J, “CO2CRC Capture Program and the UNO Mk 3 Process,” 11th Annual Conference on Carbon Capture Utilization and Sequestration, Pittsburgh, PA, April 30 (2012)
- Lide DR, CRC Handbook of Chemistry and Physics, 87th ed., CRC Press (2007)
- Jo H, Lee MG, Kim B, Song HJ, Gil H, Park J, J. Chem. Eng. Data, 57(12), 3624 (2012)
- Mahajani VV, Danckwerts PV, Chem. Eng. Sci., 38, 321 (1983)
- Cullinane JT, Rochelle GT, Chem. Eng. Sci., 59(17), 3619 (2004)
- Thee H, Smith KH, da Silva G, Kentish SE, Stevens GW, “Carbon Dioxide Absorption into Unpromoted and Borate-catalyzed Potassium Carbonate Solutions,” Chem. Eng. J., 181-182, 694-701 (2012)
- Kim YE, Choi JH, Nam SC, Yoon YI, J. Ind. Eng. Chem., 18(1), 105 (2012)
- Shen S, Feng X, Zhao R, Ghosh UK, Chen A, Chem. Eng. J., 222, 478 (2013)
- Chen X, Rochelle GT, Chem. Eng. Res. Des., 89(9A), 1693 (2011)
- Bishnoi S, “Carbon Dioxide Absorption and Solution Equilibrium in Piperazine Activated Methyldiethanolamine,” Ph.D. Dissertation. The University of Texas at Austin (2000)
- Behrl P, Maun A, Deutgen K, Tunnat A, Oeljeklaus G, Gorner K, Energy Procedia, 4, 85 (2011)
- Bougie F, Lauzon-Gauthier J, Iliuta MC, Chem. Eng. Sci., 64(9), 2011 (2009)
- Puxty G, Rowland R, Allport A, Yang Q, Bown M, Burns R, Maeder M, Attalla M, Environ. Sci. Technol., 43, 6427 (2009)
- Bougie F, Iliuta MC, Chem. Eng. Sci., 64(1), 153 (2009)
- Vaidya PD, Kenig EY, Chem. Eng. Technol., 30(11), 1467 (2007)
- Cogoni G, Baratti R, Romagnoli JA, Ind. Eng. Chem. Res., 52(28), 9612 (2013)