화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.5, 546-552, August, 2000
3-Nitro-1,2,4-triazol-5-one의 결정화 메커니즘 연구 : 1. 핵생성 속도
Crystallization of 3-Nitro-1,2,4-triazol-5-one : 1. Nucleation Mechanisms
E-mail:
초록
물과 NMP 혼합용매에서 3-Nitro-1,2,4-triazol-5-one (NTO)의 결정화에 대한 핵생성 메커니즘이 조사되었다. 준안정영역의 넓이에 대한 용매조성의 영향과 NTO 결정의 형상학적 특징이 평가되었다. NTO 용액의 준안정영역 넓이는 용매 중의 NMP 조성과 냉각속도가 증가함에 따라 증가하고 포화온도가 감소함에 따라 증가하였다. NTO 소구체의 결정화에서 핵생성 속도는 최대 과포화의 1.6에서 2.8승에 비례하고 포화온도와 용매조성에 의존한다. NTO 소구체의 결정화에서 핵생성 과정은 일차 핵생성임이 밝혀졌다. 핵생성 실험결과는 NTO-Water-NMP 삼성분계에서 소구체의 계면에너지를 계산하는데 사용되었다. 핵생성 실험으로부터 얻은 유효 계면에너지는 온도와 물/NMP 비가 감소할수록 증가하였다. 구형 NTO 소구체는 계면에너지가 높을 때 형성됨을 알수있었다.
Nucleation mechanisms of explosives 3-Nitro-1,2,4-triazol-5-one(NTO) in N-methyl-2-pyrrolidone(NMP)+water were explored. The influence of the solvent composition upon the metastable zone width and morphologic characteristics of the crystalline NTO was also discussed. The metastable zone width increases with increasing the cooling rate and NMP content in solvents, and with decreasing saturation temperature. The order of nucleation in the crystallization of NTO in water+NMP ranges from 1.6 to 2.8 and it is dependent on the saturation temperature and the solvent composition. Behavior of primary nucleation was found in the crystallization of NTO spherulites. The effective interfacial energy calculated from nucleation experiments increases with decreasing temperature and the water/NMP ratio. The compact and spherical crystals are crystallized due to a large interfacial energy.
  1. Devey RJ, "Solvent Effects in Crystallization Process," Current Topics in Material Science, Edited by E. Kaldis, North-Holland Publishing Company, Amsterdam (1982)
  2. Kim KJ, J. Cryst. Growth, 208, 569 (2000) 
  3. Kim KJ, Kim MJ, 7th International Workshop on Industrial Crystallization, Halle, Germany, 73 (1999)
  4. Keith HD, Padden FJ, J. Appl. Phys., 342, 409 (1962)
  5. Kawashima Y, Cui F, Takeuchi H, Niwa T, Hino T, Kiuchi K, Powder Technol., 78(2), 151 (1994) 
  6. Carr SM, J. Cryst. Growth, 307 (1982)
  7. Matsuno T, Koishi M, J. Cryst. Growth, 71, 263 (1985) 
  8. Ewing RC, Science, 184, 561 (1974) 
  9. Kim KJ, Kim KM, Lee JM, Kim HS, Park BS, Proceedings of ICT, Karlsruhe (2000)
  10. Sohnel O, Mullin JW, J. Cryst. Growth, 60, 239 (1982) 
  11. Becuwe A, Delclos A, Propellants, Explosives, Pyrotechnics, 18, 1 (1993)
  12. Lee KY, Coburn MD, Los Alamos Nat. Lab. Report, LA-10302-MS (1985)
  13. Yi X, Rongzu H, Tonglai Z, J. Thermal Anal., 39, 827 (1993)
  14. Ostmark H, Bergman H, Aqrist G, Thermochim. Acta, 213, 165 (1993) 
  15. Kim KJ, Kim MJ, Lee JM, Kim SH, Kim HS, Park BS, Fluid Phase Equilib., 146(1-2), 261 (1998) 
  16. Kim KJ, Kim MJ, Lee JM, Kim SH, Kim HS, Park BS, J. Chem. Eng. Data, 43(1), 65 (1998) 
  17. Kim KJ, Kim MJ, Lee JM, Kim HS, Kim SH, Park BS, Int. Symposium CGOM, Bremen, Gemany, 169 (1997)
  18. Kim KJ, Kim MJ, Lee JM, KRICT Report, Taejeon (1998)
  19. Kim KJ, Lee CH, Ryu SK, Ind. Eng. Chem. Res., 33(1), 118 (1994) 
  20. Kim KJ, Ryu SK, Chem. Eng. Commun., 159, 51 (1997)
  21. Praustniz JM, "Molecular Thermodynamics of Fluid Phase Equilibria," Prentice-Hall ; Englewoods Cliffs, NJ (1986)
  22. Nyvlt J, J. Cryst. Growth, 3-4, 377 (1986) 
  23. Mersmann A, Chem. Eng. Res. Des., 74(7), 812 (1996)
  24. Mersmann A, J. Cryst. Growth, 147, 181 (1995) 
  25. Mersmann A, "Crystallization Technology Handbook," Marcel Dekker, Inc., New York (1994)
  26. Mullin JW, "Crystallization, 3rd ed.," Butterworth, Oxford (1993)
  27. Mersmann A, Bartosch K, J. Cryst. Growth, 183, 240 (1997)
  28. Kim KJ, Mersmann A, 14th International Symposium in Industrial Crystallization, Cambridge, UK, 101-1 (1999)