화학공학소재연구정보센터
Clean Technology, Vol.20, No.4, 398-405, December, 2014
상세 모델링을 통한 RDX 연소 동특성 분석
An Analysis of Dynamic Characteristics of RDX Combustion Using Rigorous Modeling
E-mail:
초록
수명이 도래한 고에너지물질의 처리를 위해 환경오염 및 안전성, 처리용량 등을 고려해야 하며, 현재 가장 주목 받고 있는 처리방식은 소각처리공정이다. 그러나 처리대상 고에너지물질의 종류가 매우 다양하고, 특성 또한 다르기 때문에 범용적 기술개발이 힘든 실정이다. 본 연구는 상세 수학적모델링 및 동적모사를 통하여 가장 널리 사용되는 고에너지물질의 하나인 고폭약(research department explosive, RDX)을 플러그흐름반응기(plug flow reactor, PFR)에서 소각 시 반응기 내부의 물리-화학적 변화를 예측하였다. 본 연구에서 사용된 RDX반응은 263개의 상세한 기초반응식으로 이루어져 있으며 43개의 성분이 반응에 관여한다. 모사결과 반응기 내부온도를 제어하여 RDX의 민감성을 통제할 수 있었다. 반응기 내부온도를 1,200 K로 유지 할 때 RDX는 분해반응만 일어나 폭발과 같은 큰 에너지 방출을 막을 수 있었으나 공급되는 열원이 높아져 1,300 K 이상 반응기 온도가 증가 시에는 3,000 K 이상의 온도상승을 수반하는 발화반응이 일어났다. 본 연구를 통하여 반응기의 운전온도변화에 따른 RDX반응 특성을 제시함으로써 효율적인 RDX소각로 공정설계 및 운전에 기초가 될 것으로 사료된다.
In the treatment of spent high energetic materials, the issues such as environmental pollution, safety as well as working capacity should be carefully considered and well examined. In this regard, incineration has been recommended as one of the most promising processes for the disposal of such explosives. Due to the fact that high energetic materials encompass various types and their different characteristics, the technology development dealing with various materials is not an easy task. In this study, rigorous modeling and dynamic simulation was carried out to predict dynamic physico-chemical phenomena for research department explosive (RDX). Plug flow reactor was employed to describe the incinerator with 263 elementary reactions and 43 chemical species. Simulation results showed that safe operations can be achieved mainly by controlling the reactor temperature. At 1,200K, only thermal decomposition (combustion) occurred, whereas increasing temperature to 1,300 K, caused the reaction rates to increase drastically, which led to ignition. The temperature further increased to 3,000 K which was the maximum temperature recorded for the entire process. Case studies for different operating temperatures were also executed and it was concluded that the modeling approach and simulation results will serve as a basis for the effective design and operation of RDX incinerator.
  1. Kim CK, Lee BC, Lee YW, Kim HS, Clean Technol., 15(4), 233 (2009)
  2. Kim HS, Korean Chem. Eng. Res., 44(5), 435 (2006)
  3. Park JS, “A study on the Detonation Behavior of Insensitive Explosive by Experiments and Computational Simulations,” Ph.D. Dissertation, KAIST (2011)
  4. Beckstead MW, Prog. Energy Combust. Sci., 33, 497 (2007)
  5. Liau YC, Kim ES, Yang V, Combust. Flame, 126(3), 1680 (2001)
  6. Yang RJ, Thakre P, Liau YC, Yang VG, Combust. Flame, 145(1-2), 38 (2006)
  7. Ermolin NE, Zarko VE, Combus. Explos. Shock., 37(2), 123 (2001)
  8. Ermolin NE, Zarko VE, Combus. Explos. Shock., 37, 247 (2001)
  9. Anderson WR, Conner CB, Proc. Combus. Inst., 32, 2123 (2009)
  10. Babushok VI, Delucia Jr FC, Dagdigian PJ, Gottfiried JL, Munson CA, Nusca MJ, Miziolek AW, Spectrochim. Acta, Part B., 62, 1321 (2007)
  11. Chakraborty D, Muller RP, Dasgupta S, Goddard W, J. Comput. Aided Mater. Des., 8, 203 (2001)
  12. http://en.wikipedia.org/wiki/Equation_of_state