화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.46, 28-34, February, 2017
Effective disentangling method of bundled multi-walled carbon nanotubes into individual multi-walled carbon nanotubes by magnetic-field induction
E-mail:
A simple method that uses magnetic field induction for the disentanglement of bundled multiwall carbon nanotubes (MWCNTs) that aremassively aggregated in a single and intact form was investigated. MWCNTs exposed to a 1 Tesla (T) field periodically switched on and off were separated into individual MWCNTs using 4,4'-azobis(4-cyanovaleric acid) as a radical initiator with iron oxide nanoparticles. The study results show that, in accordance with the dissipation working principle, MWCNT bundles under 40 nN achieved complete disentanglement within a few hours, and these results were theoretically verified by an Opera 3D simulation. We anticipate that single CNTs obtained using our method will have applications in several CNT research areas ranging from electronic devices to biocomputers.
  1. Iijima S, Nature, 354, 56 (1991)
  2. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T, Nature, 382(6586), 54 (1996)
  3. Treacy MM, Ebbesen TW, Gibson JM, Nature, 381(6584), 678 (1996)
  4. Dai HJ, Hafner JH, Rinzler AG, Colbert DT, Smalley RE, Nature, 384(6605), 147 (1996)
  5. Son SY, Lee Y, Won S, Lee DH, Kim SD, Sung SW, Ind. Eng. Chem. Res., 47(7), 2166 (2008)
  6. Ajayan PM, Tour JM, Nature, 447, 1066 (2007)
  7. Yu H, Zhang QF, Wei F, Qian WZ, Luo GH, Carbon, 41, 2855 (2003)
  8. Lourie O, Cox DM, Wagner HD, Phys. Rev. Lett., 81, 1638 (1998)
  9. Qian D, Dickey EC, Andrews R, Rantell T, Appl. Phys. Lett., 76, 2868 (2000)
  10. Esumi K, Ishigami M, Nakajima A, Sawada K, Honda H, Carbon, 34, 279 (1996)
  11. Hilding J, Grulke EA, Zhang ZG, Lockwood F, J. Dispersion Sci. Technol., 24, 1 (2003)
  12. Boul PJ, Liu J, Mickelson ET, Huffman CB, Ericson LM, Chiang IW, Smith KA, Colbert DT, Hauge RH, Margrave JL, Smalley RE, Chem. Phys. Lett., 310, 367 (1999)
  13. Liu J, Casavant MJ, Cox M, Walters DA, Boul P, Lu W, Rimberg AJ, Smith KA, Colbert DT, Smalley RE, Chem. Phys. Lett., 303, 125 (1999)
  14. Lee JI, Jung HT, Korean Chem. Eng. Res., 46(1), 7 (2008)
  15. Pierard N, Fonseca A, Konya Z, Willems I, Van Tendeloo G, Nagy JB, Chem. Phys. Lett., 335(1-2), 1 (2001)
  16. Li YB, Wei BQ, Liang J, Yu Q, Wu DH, Carbon, 37, 493 (1999)
  17. Mawhinney DB, Naumenko V, Kuznetsova A, Yates JT, Liu J, Smalley RE, J. Am. Chem. Soc., 122(10), 2383 (2000)
  18. Krstic V, Duesberg GS, Muster J, Burghard M, Roth S, Chem. Mater., 10, 2338 (1998)
  19. Duesberg GS, Muster J, Krstic V, Burghard M, Roth S, Appl. Phys. A-Mater. Sci. Process., 67, 117 (1998)
  20. Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH, Polymer, 40(21), 5967 (1999)
  21. Jeong SJ, Park KA, Jeong SH, Jeong HJ, An KH, Nah CW, Pribat D, Lee SH, Lee YH, Nano Lett., 7, 2178 (2007)
  22. Son SY, Lee DH, Dispersion Method of Carbon Nanotube, Dispersion Apparatus of Carbon Nanotube, and Carbon Nanotube Dispersion Obtained Thereby. US Patent 13/364,371 pending (2012) and Korea Patent 10-1098333 (2011).
  23. Yoo HJ, Lee SY, You NH, Lee DS, Yeo HU, Choi YM, Goh MJ, Park JW, Akagi K, Cho JW, Synth. Met., 181, 10 (2013)
  24. Dima D, Murarescu M, Andrei G, Dig. J. Nanomater. Biostruct., 5(4), 1009 (2010)
  25. Bagheri H, Afkhami A, Panahi Y, Khoshsafar H, Shirzadmehr A, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 37, 264 (2014)
  26. Bagheri H, Afkhami A, Saber-Tehrani M, Khoshsafar H, Talanta, 97, 87 (2012)
  27. Manz A, Effenhauser GS, Burggraf N, Harrison DJ, Seiler K, Fluri K, J. Micromech. Microeng., 4, 7 (1994)
  28. Rong R, Choi JW, Ahn CH, J. Micromech. Microeng., 16, 2783 (2006)
  29. Go JS, Trans. KSME, 31, 392 (2007)
  30. Song JH, Lee YH, Bae HS, J. Korean Soc. Manuf. Technol. Eng., 7, 31 (2008)
  31. Stoffelbach F, Aqil A, Jerome C, Jerome R, Detrembleur C, Chem. Commun., 36, 4532 (2005)
  32. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS, Science, 287, 637 (2000)