화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.3, 318-324, June, 2018
활성탄소섬유의 기공구조가 기계적 특성에 미치는 영향
Effect of Pore Structure of Activated Carbon Fiber on Mechanical Properties
E-mail:
초록
본 연구에서는 물리적 활성화법인 수증기 활성화법을 이용하여 PAN (Polyacrylonitrile)계 활성탄소섬유를 제조하였다. 활성화는 온도와 시간을 변수로 하였으며, 활성화 온도(700, 750, 800 ℃)에 도달하였을 때 200 mL/min의 수증기 유량의 조건으로 PAN 탄소섬유의 활성화를 진행하였다. 제조된 활성탄소섬유의 기공구조를 분석하기 위하여 질소가스의 흡.탈 등온선을 통한 비표면적(SBET) 측정과 표면분석을 위한 AFM 분석을 실시하였다. 또한 인장시험을 실시하여 활성화 결과 형성된 기공구조가 섬유의 기계적 특성에 미치는 영향을 고찰하였다. 그 결과, 활성화 후 섬유의 비표면적(SBET)은 448~902 m2/g의 값을 나타냈으며, 인장강도는 58.16~84.92%, 탄성계수는 69.81~83.89%의 감소를 보였다.
In this study, PAN (polyacrylonitrile) based activated carbon fibers were prepared by water vapor activation method which is a physical activation method. Activation was performed with temperature and time as parameters. When the activation temperature reached 700, 750 and 800 ℃, the activation was carried out under the condition of a water vapor flow rate of 200 ml/min. In order to analyze the pore structure of activated carbon fibers, the specific surface area (SBET) was measured by the adsorption/desorption isotherm of nitrogen gas and AFM analysis was performed for the surface analysis. Tensile tests were also conducted to investigate the effect of the pore structure on mechanical properties of fibers. As a result, the SBET of fibers after the activation showed a value of 448~902 m2/g, the tensile strength decreased 58.16~84.92% and the tensile modulus decreased to 69.81~83.89%.
  1. National Air Pollutants Emission Service, Emissions of pollutants in 2014, http://airemiss.nier.go.kr (2014).
  2. Bae MT, Water pollution at Paldang water source ‘golf course.camping ground.water leisure facility’ 108 places detection, Asia Today, 2017.09.20., http://www.asiatoday.co.kr/view.php?key=20170920010009420.
  3. Mor S, Chhoden K, Negi P, Ravindra K, Environ. Nanotechnol. Monit. Manag., 7, 15 (2017)
  4. Son HK, Sivakumar S, Rood MJ, Kim BJ, J. Hazard. Mater., 301, 27 (2016)
  5. Zhao D, Yu Y, Chen JP, RSC Adv., 6, 27020 (2016)
  6. Pak SH, Jeon MJ, Jeon YW, Int. Biodeterior. Biodegradation, 113, 195 (2016)
  7. Pap S, Radonic J, Trifunovic S, Adamovic D, Mihajlovic I, Miloradov MV, Sekulic MT, J. Environ. Manage., 184, 297 (2016)
  8. Yavuz R, Akyildiz H, Karatepe N, Cetinkaya E, Fuel Process. Technol., 91(1), 80 (2010)
  9. Lee YS, Phys. High Technol., 13, 18 (2004)
  10. Gumus RH, Okpeku I, Adv. Chem. Eng. Sci.., 5, 51 (2015)
  11. Park CR, Kang SJ, Yoon CH, Polym. Sci. Technol., 7(2), 130 (1996)
  12. Lee T, Ooi CH, Othman R, Yeoh FY, Rev. Adv. Mater. Sci., 36, 118 (2014)
  13. Wang L, Yao Y, Zhang Z, Sun L, Lu W, Chen W, Chen H, Chem. Eng., 251, 348 (2014)
  14. Song M, Jin B, Xiao R, Yang L, Wu Y, Zhong Z, Huang Y, Biomass Bioenergy, 48, 250 (2013)
  15. Huang Y, Ma E, Zhao G, Ind. Crop. Prod., 69, 447 (2015)
  16. Macia-Agullo JA, Moore BC, Cazorla-Amoros D, Linares-Solano A, Carbon, 42, 1367 (2004)
  17. Kim DW, Kil HS, Nakabayashi K, Yoon SH, Miyawaki J, Carbon, 114, 98 (2017)
  18. Tai FC, Wei C, Chang SH, Chen WS, J. Raman Spectrosc., 41, 933 (2010)
  19. Lee HJ, Won JS, Lim SC, Lee TS, Yoon JY, Lee SG, Text. Sci. Eng., 53, 103 (2016)
  20. Yusof N, Rana D, Ismail AF, Matsuura T, J. Appl. Res. Technol., 14, 54 (2016)