Applied Chemistry for Engineering, Vol.29, No.3, 312-317, June, 2018
새집증후군 유발 벤젠가스 흡착에 미치는 활성탄소섬유의 함산소불소화 영향
Effect of Oxyfluorination of Activated Carbon Fibers on Adsorption of Benzene Gas Causing Sick House Syndrome
E-mail:,
초록
본 연구에서는 새집증후군 원인가스 중 하나인 벤젠 가스 흡착특성을 향상시키기 위하여 활성탄소섬유에 함산소불소화 처리를 실시하였다. 함산소불소화 처리된 활성탄소섬유 표면특성 및 기공특성은 X-선광전자분광기(XPS)와 Brunauer-Emmett-Teller (BET) 분석을 통해 확인하였으며, 벤젠 가스 흡착 특성은 가스크로마토그래피(GC)로 평가하였다. XPS 결과로부터 불소분압이 증가함에 따라 활성탄소섬유 표면의 불소관능기가 증가함을 알 수 있었다. 함산소불소화 처리 후 모든 샘플의 비표면적은 감소하였으나, 불소 분압이 0.1 bar일 때 그 미세기공 부피비가 증가하였다. 함산소불소화 처리된 활성탄소섬유는 11 h 동안 100 ppm의 벤젠 가스를 모두 흡착하였으며, 이는 미처리 활성탄소섬유와 비교하여 벤젠 가스 흡착효율이 약 2배 향상됨을 알 수 있었다.
In this study, activated carbon fibers (ACFs) were treated by oxy-fluorination to improve the adsorption property of benzene gas, one of the gases causing sick house syndrome. Surface properties and pore characteristics of oxyfluorinated activated carbon fibers were confirmed by X-ray photoelectron Spectroscopy (XPS) and Brunauer-Emmett-Teller (BET), and adsorption properties of benzene gas were evaluated by gas chromatography (GC). As a result of XPS data, it was confirmed that the fluorine functional groups on activated carbon fibers surface increased with increasing the fluorine partial pressure. The specific surface area of all samples decreased after the oxyfluorination treatment, but the micropore volume ratio increased when the fluorine partial pressure was at 0.1 bar. The oxyfluorinated activated carbon fibers adsorbed 100 ppm benzene gas for an 11 h, it was found that the adsorption efficiency of benzene gas was improved about twice as much as that of untreated ones.
- Ju YW, Oh GY, Korean J. Chem. Eng., 34(10), 2731 (2017)
- Koike Y, Mitarai Y, Trans. Sci. Technol., 2, 50 (2015)
- Lee Y, Lee SH, Kyeng IS, Lee SS, J. Archit. Inst. Korea Struct. Constr., 32, 27 (2016)
- Zhang XY, Gao B, Creamer AE, Cao CC, Li YC, J. Hazard. Mater., 338, 102 (2017)
- Li MS, Wu SC, Peng YH, Shih YH, Sep. Purif. Technol., 170, 102 (2016)
- Fayaz M, Shariaty P, Atkinson JD, Hashisho Z, Phillips JH, Anderson JE, Nichols M, Environ. Sci. Technol., 49, 4536 (2015)
- Kim MJ, Jung MJ, Choi SS, Lee YS, Appl. Chem. Eng., 26(4), 432 (2015)
- Kim MJ, Jung MJ, Choi SS, Lee YS, Appl. Chem. Eng., 26(1), 92 (2015)
- Son HK, Sivakumar S, Rood MJ, Kim BJ, J. Hazard. Mater., 301, 27 (2016)
- Bai BC, Im JS, Lee YS, Catal. Lett., 23, 69 (2017)
- Heo YJ, Le MUT, Park SJ, Catal. Lett., 18, 62 (2016)
- Shi L, Yang K, Zhao QP, Wang HY, Cui Q, Energy Fuels, 29(10), 6678 (2015)
- Guo YY, Li YR, Zhu TY, Ye M, Fuel, 143, 536 (2015)
- Kim MJ, Lee KM, Lee S, Yeo SY, Choi SS, Lee YS, Appl. Chem. Eng., 28(1), 80 (2017)
- Kazak O, Eker YR, Bingol H, Tor A, Chem. Eng. J., 325, 564 (2017)
- Li M, Lu B, Ke QF, Guo YJ, Guo YP, J. Hazard. Mater., 333, 88 (2017)
- Lee KM, Kim MJ, Jo H, Yeo SY, Lee YS, Catal. Lett., 24, 111 (2017)
- Jo H, Kim KH, Jung MJ, Park JH, Lee YS, Appl. Surf. Sci., 409, 117 (2017)
- Lee KM, Lee SE, Lee YS, Polymer, 40, 553 (2016)
- Choi YJ, Lee KM, Kim K, Lee YS, Polymer, 41, 835 (2017)
- Jung MJ, Ko YY, Kim KH, Lee YS, Appl. Chem. Eng., 28(6), 638 (2017)
- Kim MJ, Jung MJ, Kim MI, Choi SS, Lee YS, Appl. Chem. Eng., 26(5), 587 (2015)
- Cruz-Barba LE, Manolache S, Denes F, Langmuir, 18(24), 9393 (2002)
- Jung MJ, Jeong E, Cho S, Yeo SY, Lee YS, J. Colloid Interface Sci., 381, 152 (2012)
- Jeong E, Jung MJ, Lee YS, J. Fluor. Chem., 150, 98 (2013)
- Giraudet J, Delabarre C, Guerin K, Dubois M, Masin F, Hamwi A, J. Power Sources, 158(2), 1365 (2006)
- Kim DY, In SJ, Lee YS, Polymer, 37, 316 (2013)
- Chiang YC, Chiang PC, Huang CP, Carbon, 39, 523 (2001)
- Lee SW, Bae SK, Kwon JH, Na YS, An CD, Yoon YS, Song SK, J. Korean Soc. Environ. Eng., 29, 620 (2005)
- Othman FEC, Yusof N, Hasbullah H, Jaafar J, Ismail AF, Abdullah N, Nordin NAHM, Aziz F, Salleh WNW, J. Ind. Eng. Chem., 51, 281 (2017)
- Ju HS, Lee SI, Lee YS, Ahn HG, Appl. Chem., 4(1), 173 (2000)