화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.66, 248-253, October, 2018
Facile fabrication of porous Sn-based catalysts for electrochemical CO2 reduction to HCOOH and syngas
E-mail:
Porous Sn and Sn-based binary catalysts are facilely fabricated by an electrodeposition method. Varying conditions for Sn electrodeposition enables a control of Sn roughness, which exhibits a significant effect on catalytic performance for electrochemical CO2 reduction. At a specific applied potential, the porous Sn catalyst with relative roughness factor of 56.5 demonstrates a HCOOH Faradaic efficiency of 40.7% with a H2/CO ratio of 2.2. Further improvement of the HCOOH Faradaic efficiency to 59.2% is achieved by using a porous Sn0.29In0.71 catalyst. This catalyst also achieves a H2/CO ratio of 2.2, which can be used as syngas to produce value-added hydrocarbons.
  1. Sawyer J, Nature, 239, 23 (1972)
  2. Davis SJ, Caldeira K, Matthews HD, Science, 329(5997), 1330 (2010)
  3. Leung DYC, Caramanna G, Maroto-Valer MM, Renew. Sust. Energ. Rev., 39, 426 (2014)
  4. Cuellar-Franca RM, Azapagic A, J. CO2 Util., 9, 82 (2015)
  5. Qiao J, Liu Y, Hong F, Zhang J, Chem. Soc. Rev., 43, 631 (2014)
  6. Zhu DD, Liu JL, Qiao SZ, Adv. Mater., 28(18), 3423 (2016)
  7. Spinner NS, Vega JA, Mustain WE, Catal. Sci. Technol., 2, 19 (2012)
  8. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF, J. Am. Chem. Soc., 136(40), 14107 (2014)
  9. Lu X, Leung DYC, Wang H, Leung MKH, Xuan J, ChemEletroChem, 1, 836 (2014)
  10. Lim RJ, Xie MS, Sk MA, Lee JM, Fisher A, Wang X, Lim KH, Catal. Today, 233, 169 (2014)
  11. Sridhar N, Hill D, Agarwal A, Zhai Y, Hektor E, Carbon Dioxide Utilization. Electrochemical Conversion of CO2-Opportunities and Challenges, Det Norske Veritas, 2011.
  12. Agarwal AS, Zhai Y, Hill D, Sridhar N, ChemSusChem, 4, 1301 (2011)
  13. Galvis HMT, de Jong KP, ACS Catal., 3, 2130 (2013)
  14. Delacourt C, Ridgway PL, Kerr JB, Newman J, J. Eletrochem. Soc., 155, B42 (2008)
  15. Dry ME, Catal. Today, 71(3-4), 227 (2002)
  16. Gutierrez RR, Haussener S, J. Electrochem. Soc., 163(10), H1008 (2016)
  17. Cho M, Seo JW, Song JT, Lee JY, Oh J, ACS Omega, 2, 3441 (2017)
  18. Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T, J. Power Sources, 111(1), 83 (2002)
  19. Yu XW, Pickup PG, J. Power Sources, 182(1), 124 (2008)
  20. Chen YH, Li CW, Kanan MW, J. Am. Chem. Soc., 134(49), 19969 (2012)
  21. Kim C, Jeon HS, Eom T, Jee MS, Kim H, Friend CM, Min BK, Hwang YJ, J. Am. Chem. Soc., 137(43), 13844 (2015)
  22. Lu J, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao F, Nat. Commun., 5, 3242 (2014)
  23. Rosen J, Hutchings GS, Lu Q, Forest RV, Moore A, Jiao F, ACS Catal., 5, 4586 (2015)
  24. Chen YH, Kanan MW, J. Am. Chem. Soc., 134(4), 1986 (2012)
  25. Zhang S, Kang P, Meyer TJ, J. Am. Chem. Soc., 136(5), 1734 (2014)
  26. Shaughnessy CI, Jantz DT, Leonard KC, J. Mater. Chem. A, 5, 22743 (2017)
  27. Lee CH, Kanan MW, ACS Catal., 5, 465 (2015)
  28. Li CW, Kanan MW, J. Am. Chem. Soc., 134(17), 7231 (2012)
  29. Feaster JT, Shi C, Cave ER, Hatsukade T, Abram DN, Kuhl KP, Hahn C, Nørskov JK, Jaramillo TF, ACS Catal., 7, 4822 (2017)
  30. Shi C, Hansen HA, Lausche AC, Nørskov JK, Phys. Chem. Chem. Phys., 16, 4720 (2014)
  31. Durand WJ, Peterson AA, Studt F, Abild-Pedersen F, Nørskov JK, Surf. Sci., 605, 1354 (2011)
  32. Won DH, Choi CH, Chung J, Chung MW, Kim EH, Woo SI, ChemSusChem, 8, 3092 (2015)
  33. Li F, Chen L, Knowles GP, MacFarlane DR, Zhang J, Angew. Chem.-Int. Edit., 129, 520 (2017)
  34. Wu J, Risalvato FG, Ma S, Zhou XD, J. Mater. Chem. A, 2, 1647 (2014)
  35. Luc W, Collins C, Wang SW, Xin HL, He K, Kang YJ, Jiao F, J. Am. Chem. Soc., 139(5), 1885 (2017)
  36. Bai X, Chen W, Zhao C, Li S, Song Y, Ge R, Wei W, Sun Y, Angew. Chem.-Int. Edit., 129, 12387 (2017)
  37. Choi SY, Jeong SK, Kim HJ, Baek IH, Park KT, ACS Sustain. Chem. Eng., 4, 1311 (2016)
  38. Yoon Y, Hall AS, Surendranath Y, Angew. Chem.-Int. Edit., 128, 15508 (2016)
  39. Rosen J, Hutchings GS, Lu Q, Rivera S, Zhou Y, Vlachos DG, Jiao F, ACS Catal., 5, 4293 (2015)
  40. Choi J, Kim MJ, Ahn SH, Choi I, Jang JH, Ham YS, Kim JJ, Kim SK, Chem. Eng. J., 299, 37 (2016)
  41. Park H, Choi J, Kim H, Hwang E, Ha DH, Ahn SH, Kim SK, Appl. Catal. B: Environ., 219, 123 (2017)
  42. Ham YS, Choe S, Kim MJ, Lim T, Kim SK, Kim JJ, Appl. Catal. B: Environ., 208, 35 (2017)
  43. Shin HC, Dong J, Liu ML, Adv. Mater., 15(19), 1610 (2003)
  44. Cherevko S, Chung CH, Electrochem. Commun., 13, 16 (2011)
  45. Cherevko S, Xing X, Chung CH, Electrochem. Commun., 12, 467 (2010)
  46. Marozzi CA, Chialvo AC, Eletrochim. Acta, 45, 2111 (2000)
  47. Sen S, Liu D, Palmore GTR, ACS Catal., 4, 3091 (2014)
  48. Hoang TTH, Ma S, Gold JI, Kenis PJA, Gewirth AA, ACS Catal., 7, 3313 (2017)
  49. Dutta A, Rahaman M, Luedi NC, Mohos M, Broekmann P, ACS Catal., 6, 3804 (2016)
  50. Du D, Lan R, Humphreys J, Sengodan S, Xie K, Wang H, Tao S, ChemistrySelect, 1, 1711 (2016)
  51. Zhang J, Baro MD, Pellicer E, Sort J, Nanoscale, 6, 12490 (2014)
  52. Guo F, Cao DX, Du MM, Ye K, Wang GL, Zhang WP, Gao YY, Cheng K, J. Power Sources, 307, 697 (2016)
  53. Xia XH, Tu JP, Zhang YQ, Mai YJ, Wang XL, Gu CD, Zhao XB, J. Phys. Chem. C, 115, 22622 (2011)
  54. Oh S, Kim H, Kwon Y, Kim M, Cho E, Kwon H, J. Mater. Chem. A, 4, 18272 (2016)
  55. You B, Jiang N, Sheng ML, Bhushan MW, Sun YJ, ACS Catal., 6, 714 (2016)
  56. Trasatti S, J. Electroanal. Chem. Interfacial Electrochem., 39, 163 (1972)
  57. Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Norskov JK, Nat. Mater., 5(11), 909 (2006)
  58. Centi G, Quadrelli EA, Perathoner S, Energy Environ. Sci., 6, 1711 (2013)