Journal of Industrial and Engineering Chemistry, Vol.66, 248-253, October, 2018
Facile fabrication of porous Sn-based catalysts for electrochemical CO2 reduction to HCOOH and syngas
E-mail:
Porous Sn and Sn-based binary catalysts are facilely fabricated by an electrodeposition method. Varying conditions for Sn electrodeposition enables a control of Sn roughness, which exhibits a significant effect on catalytic performance for electrochemical CO2 reduction. At a specific applied potential, the porous Sn catalyst with relative roughness factor of 56.5 demonstrates a HCOOH Faradaic efficiency of 40.7% with a H2/CO ratio of 2.2. Further improvement of the HCOOH Faradaic efficiency to 59.2% is achieved by using a porous Sn0.29In0.71 catalyst. This catalyst also achieves a H2/CO ratio of 2.2, which can be used as syngas to produce value-added hydrocarbons.
- Sawyer J, Nature, 239, 23 (1972)
- Davis SJ, Caldeira K, Matthews HD, Science, 329(5997), 1330 (2010)
- Leung DYC, Caramanna G, Maroto-Valer MM, Renew. Sust. Energ. Rev., 39, 426 (2014)
- Cuellar-Franca RM, Azapagic A, J. CO2 Util., 9, 82 (2015)
- Qiao J, Liu Y, Hong F, Zhang J, Chem. Soc. Rev., 43, 631 (2014)
- Zhu DD, Liu JL, Qiao SZ, Adv. Mater., 28(18), 3423 (2016)
- Spinner NS, Vega JA, Mustain WE, Catal. Sci. Technol., 2, 19 (2012)
- Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF, J. Am. Chem. Soc., 136(40), 14107 (2014)
- Lu X, Leung DYC, Wang H, Leung MKH, Xuan J, ChemEletroChem, 1, 836 (2014)
- Lim RJ, Xie MS, Sk MA, Lee JM, Fisher A, Wang X, Lim KH, Catal. Today, 233, 169 (2014)
- Sridhar N, Hill D, Agarwal A, Zhai Y, Hektor E, Carbon Dioxide Utilization. Electrochemical Conversion of CO2-Opportunities and Challenges, Det Norske Veritas, 2011.
- Agarwal AS, Zhai Y, Hill D, Sridhar N, ChemSusChem, 4, 1301 (2011)
- Galvis HMT, de Jong KP, ACS Catal., 3, 2130 (2013)
- Delacourt C, Ridgway PL, Kerr JB, Newman J, J. Eletrochem. Soc., 155, B42 (2008)
- Dry ME, Catal. Today, 71(3-4), 227 (2002)
- Gutierrez RR, Haussener S, J. Electrochem. Soc., 163(10), H1008 (2016)
- Cho M, Seo JW, Song JT, Lee JY, Oh J, ACS Omega, 2, 3441 (2017)
- Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T, J. Power Sources, 111(1), 83 (2002)
- Yu XW, Pickup PG, J. Power Sources, 182(1), 124 (2008)
- Chen YH, Li CW, Kanan MW, J. Am. Chem. Soc., 134(49), 19969 (2012)
- Kim C, Jeon HS, Eom T, Jee MS, Kim H, Friend CM, Min BK, Hwang YJ, J. Am. Chem. Soc., 137(43), 13844 (2015)
- Lu J, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao F, Nat. Commun., 5, 3242 (2014)
- Rosen J, Hutchings GS, Lu Q, Forest RV, Moore A, Jiao F, ACS Catal., 5, 4586 (2015)
- Chen YH, Kanan MW, J. Am. Chem. Soc., 134(4), 1986 (2012)
- Zhang S, Kang P, Meyer TJ, J. Am. Chem. Soc., 136(5), 1734 (2014)
- Shaughnessy CI, Jantz DT, Leonard KC, J. Mater. Chem. A, 5, 22743 (2017)
- Lee CH, Kanan MW, ACS Catal., 5, 465 (2015)
- Li CW, Kanan MW, J. Am. Chem. Soc., 134(17), 7231 (2012)
- Feaster JT, Shi C, Cave ER, Hatsukade T, Abram DN, Kuhl KP, Hahn C, Nørskov JK, Jaramillo TF, ACS Catal., 7, 4822 (2017)
- Shi C, Hansen HA, Lausche AC, Nørskov JK, Phys. Chem. Chem. Phys., 16, 4720 (2014)
- Durand WJ, Peterson AA, Studt F, Abild-Pedersen F, Nørskov JK, Surf. Sci., 605, 1354 (2011)
- Won DH, Choi CH, Chung J, Chung MW, Kim EH, Woo SI, ChemSusChem, 8, 3092 (2015)
- Li F, Chen L, Knowles GP, MacFarlane DR, Zhang J, Angew. Chem.-Int. Edit., 129, 520 (2017)
- Wu J, Risalvato FG, Ma S, Zhou XD, J. Mater. Chem. A, 2, 1647 (2014)
- Luc W, Collins C, Wang SW, Xin HL, He K, Kang YJ, Jiao F, J. Am. Chem. Soc., 139(5), 1885 (2017)
- Bai X, Chen W, Zhao C, Li S, Song Y, Ge R, Wei W, Sun Y, Angew. Chem.-Int. Edit., 129, 12387 (2017)
- Choi SY, Jeong SK, Kim HJ, Baek IH, Park KT, ACS Sustain. Chem. Eng., 4, 1311 (2016)
- Yoon Y, Hall AS, Surendranath Y, Angew. Chem.-Int. Edit., 128, 15508 (2016)
- Rosen J, Hutchings GS, Lu Q, Rivera S, Zhou Y, Vlachos DG, Jiao F, ACS Catal., 5, 4293 (2015)
- Choi J, Kim MJ, Ahn SH, Choi I, Jang JH, Ham YS, Kim JJ, Kim SK, Chem. Eng. J., 299, 37 (2016)
- Park H, Choi J, Kim H, Hwang E, Ha DH, Ahn SH, Kim SK, Appl. Catal. B: Environ., 219, 123 (2017)
- Ham YS, Choe S, Kim MJ, Lim T, Kim SK, Kim JJ, Appl. Catal. B: Environ., 208, 35 (2017)
- Shin HC, Dong J, Liu ML, Adv. Mater., 15(19), 1610 (2003)
- Cherevko S, Chung CH, Electrochem. Commun., 13, 16 (2011)
- Cherevko S, Xing X, Chung CH, Electrochem. Commun., 12, 467 (2010)
- Marozzi CA, Chialvo AC, Eletrochim. Acta, 45, 2111 (2000)
- Sen S, Liu D, Palmore GTR, ACS Catal., 4, 3091 (2014)
- Hoang TTH, Ma S, Gold JI, Kenis PJA, Gewirth AA, ACS Catal., 7, 3313 (2017)
- Dutta A, Rahaman M, Luedi NC, Mohos M, Broekmann P, ACS Catal., 6, 3804 (2016)
- Du D, Lan R, Humphreys J, Sengodan S, Xie K, Wang H, Tao S, ChemistrySelect, 1, 1711 (2016)
- Zhang J, Baro MD, Pellicer E, Sort J, Nanoscale, 6, 12490 (2014)
- Guo F, Cao DX, Du MM, Ye K, Wang GL, Zhang WP, Gao YY, Cheng K, J. Power Sources, 307, 697 (2016)
- Xia XH, Tu JP, Zhang YQ, Mai YJ, Wang XL, Gu CD, Zhao XB, J. Phys. Chem. C, 115, 22622 (2011)
- Oh S, Kim H, Kwon Y, Kim M, Cho E, Kwon H, J. Mater. Chem. A, 4, 18272 (2016)
- You B, Jiang N, Sheng ML, Bhushan MW, Sun YJ, ACS Catal., 6, 714 (2016)
- Trasatti S, J. Electroanal. Chem. Interfacial Electrochem., 39, 163 (1972)
- Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Norskov JK, Nat. Mater., 5(11), 909 (2006)
- Centi G, Quadrelli EA, Perathoner S, Energy Environ. Sci., 6, 1711 (2013)