화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.7, 443-450, July, 2019
ASTM D5470 방법으로 연강과 스테인리스강의 열전도도 측정시 열그리스의 영향
Effect of Thermal Grease on Thermal Conductivity for Mild Steel and Stainless Steel by ASTM D5470
E-mail:
Thermal management is a critical issue for the development of high-performance electronic devices. In this paper, thermal conductivity values of mild steel and stainless steel(STS) are measured by light flash analysis(LFA) and dynamic thermal interface material(DynTIM) Tester. The shapes of samples for thermal property measurement are disc type with a diameter of 12.6 mm. For samples with different thickness, the thermal diffusivity and thermal conductivity are measured by LFA. For identical samples, the thermal resistance(Rth) and thermal conductivity are measured using a DynTIM Tester. The thermal conductivity of samples with different thicknesses, measured by LFA, show similar values in a range of 5 %. However, the thermal conductivity of samples measured by DynTIM Tester show widely scattered values according to the application of thermal grease. When we use the thermal grease to remove air gaps, the thermal conductivity of samples measured by DynTIM Tester is larger than that measured by LFA. But, when we did not use thermal grease, the thermal conductivity of samples measured by DynTIM Tester is smaller than that measured by LFA. For the DynTIM Tester results, we also find that the slope of the graph of thermal resistance vs. thickness is affected by the usage of thermal grease. From this, we are able to conclude that the wide scattering of thermal conductivity for samples measured with the DynTIM Tester is caused by the change of slope in the graph of thermal resistance-thickness.
  1. Hofmeister AM, Whittington AG, J. Non-Cryst. Solids, 358, 1072 (2012)
  2. Kovalev AI, Rashkovskiy AY, Wainstein DL, Gago R, Soldera F, Endrino JL, Curr. Appl. Phys., 16(4), 459 (2016)
  3. Hahn BD, Kim Y, Ahn CW, Choi JJ, Ryu J, Kim JW, Yoon WH, Park DS, Yoon SY, Ma B, Ceram. Int., 42, 18141 (2016)
  4. Raypah ME, Dheepan MK, Dvarajan M, Sulaiman F, Appl. Therm. Eng., 101, 19 (2016)
  5. Kim JG, Bae DH, Hahn BD, Cho YR, Compos. Part B, 110, 1 (2017)
  6. Lee JE, Bae DH, Chung WS, Kim KH, Lee JH, Cho YR, J. Mater. Process. Technol., 187-188, 546 (2007)
  7. Streb F, Mengel M, Schweitzer D, Kasztelan C, Schoderboeck P, Ruhl G, Lampke T, IEEE Trans. Compon. Packag. Manuf. Technol., 8, 1024 (2018)
  8. Baba T, Taketoshi N, Yagi T, Jap. J. Appl. Phys., 50, 11R01 (2011)
  9. Cahill DG, Rev. Sci. Instrum., 61, 802 (1990)
  10. Streb F, Schweitzer D, Mengel M, Lampke T, 33rd SEME-TRERM Symposium, p.269, San Jose, California, USA (2017).
  11. Hautcoeur D. Lorgouilloux Y, Leriche A, Gonon M, Nait-Ali B, Smith DS, Lardot V, Cambier F, Ceram. Int., 42, 14077 (2016)
  12. Wang S, Xie T, Xie H, Appl. Therm. Eng., 130, 847 (2018)
  13. Kim JG, Ju JH, Hahn BD, Park SH, Cho YR, Korean J. Met. Mater., 55, 446 (2017)
  14. Kim JG, Ju JH, Kim DY, Park SH, Cho YR, Korean J. Met. Mater., 55, 523 (2017)
  15. Lee S, Kim D, Thermochim. Acta, 653, 126 (2017)
  16. Peet MJ, Hasan HS, Bhadeshia HKDH, Int. J. Heat Mass Transf., 54(11-12), 2602 (2011)
  17. Sweet JN, Roth EP, Moss M, Int. J. Thermophys., 8, 593 (1987)
  18. Xavior MA, Adithan M, J. Mater. Process. Technol., 209, 900 (2009)
  19. ASTM: D5470-12, ASTM International, United States (2012).
  20. Grujicic M, Zhao CL, Dusel EC, Appl. Surf. Sci., 246(1-3), 290 (2005)
  21. Bae KJ, Jeong EW, Ju JH, Chun HH, Cho YR, Sci. Adv. Mater., 8, 1838 (2016)
  22. Bae KJ, Yao W, He Y, Cho YR, Korean J. Met. Mater., 55, 624 (2017)
  23. Jung YI, Kim IH, Kim HG, Jang H, Lee SJ, Korea J. Mater. Res., 29, 271 (2019)