Korean Journal of Materials Research, Vol.29, No.7, 451-455, July, 2019
헤비페르미온계 CeNi2Ge2의 자기 및 열적 특성
The Magnetic and Thermal Properties of a Heavy Fermion CeNi2Ge2
E-mail:
The electromagnetic and thermal properties of a heavy fermion CeNi2Ge2 are investigated using first-principle methods with local density approximation (LDA) and fully relativistic approaches. The Ce f-bands are located near the Fermi energy EF and hybridized with the Ni-3d states. This hybridization plays important roles in the characteristics of this material. The fully relativistic approach shows that the 4f states split into 4f7/2 and 4f5/2 states due to spin-orbit coupling effects. It can be found that within the LDA calculation, the density of states near the Fermi level are mainly of Ce-derived 4f states. The Ni-derived 3d states have high peaks around -1.7eV and spreaded over wide range around the Fermi level. The calculated magnetic of CeNi2Ge2 with LDA method does not match with that of experimental result because of strong correlation interaction between electrons in f orbitals. The calculations show that the specific heat coefficient underestimates the experimental value by a factor of 19.1. The discrepancy between the band calculation and experiment for specific heat coefficient is attributed to the formation of a quasiparticle. Because of the volume contraction, the exchange interaction between the f states and the conduction electrons is large in CeNi2Ge2, which increases the quasiparticle mass. This will result in the enhancement of the specific hear coefficient.
- Bogenberger B, Lohneysen H, Phys. Rev. Lett., 74, 1016 (1995)
- Grosche FM, Julian SR, Mathur ND, Glonzarich G, Physica B, 50, 223 (1996)
- Walker IR, Grosche FM, Freye DM, Lonzarich GG, Physica C, 303, 282 (1997)
- Steglich F, Buschinger B, Gegenwart P, Lohman M, et al., J. Phys.: Condens. Matter, 8, 9909 (1996)
- Kadowaki H, Fak B, Fukuhara T, Maezawa K, Nakajima K, Adams MA, Raymond S, Flouquet J, Phys. Rev. B, 68, 14042 (2003)
- Sparn G, Canfield PC, Hellmann P, Keller M, Link A, Fisher RA, Phillips NE, Thompson JD, Steglich F, Physica B, 212, 206 (1997)
- Knopp G, Loidl A, Caspary R, Gottwick U, Bredl CD, Spille H, Steglich F, Murari AP, J. Magn. Magn. Mater., 74, 341 (1997)
- Ehm D, Feinert F, Nicolay G, Schmidt S, Hufner S, Claessen R, Eyert V, Geibel C, Phys. Rev. B, 64, 235104 (2001)
- Koepernik K, Eschrig H, Phys. Rev. B, 59, 1743 (1999)
- Eschrig H, Optimized LCAO Method and the electronic Structure of Extended Systems. p.1, Springer, Berlin (1989).
- Perdew JP, Wang Y, Phys. Rev. B, 45, 13244 (1992)
- Fak B, Flouquet J, Lapertot G, Fukuhara T, Kadowaki H, J. Phys. Condens. Matter, 12, 5423 (2000)
- Aoki Y, Urakawa J, Sugawara H, Sato H, Fukuhara T, MaezawaK, J. Phys. Soc. Jpn., 66, 2993 (1997)