Journal of Industrial and Engineering Chemistry, Vol.78, 73-78, October, 2019
Leaching-resistant SnO2/γ-Al2O3 nanocatalyst for stable electrochemical CO2 reduction into formate
E-mail:,
Tin(IV) oxide (SnO2) is the catalyst most commonly used for electrochemical reduction of CO2 into formate. However, the electrocatalytic performance of SnO2 is not ensured due to its poor long-term stability. Here, we report our study on the electrochemical stability of SnO2 for 152 h and describe an approach to achieve stable SnO2 electrodes using a γ-alumina (γ-Al2O3) support. The γ-Al2O3 reduces the leaching of Sn from the supported-SnO2 during CO2 electrolysis due to the strong interaction of the support with the electrocatalyst. This maintains the particle size, morphology, and crystallinity of SnO2. Thereby, pulverization of SnO2 is prevented and stable selectivity towards CO2 reduction results. The prepared SnO2/γ-Al2O3 exhibits much more stable Faradaic efficiency (65.0% at 152 h) and partial current density (21.7 mA cm-2 at 152 h) for formate synthesis than does unsupported SnO2 electrocatalyst (14.2% Faradaic efficiency; 4.6 mA cm-2 of partial current density at 152 h).
- Qiao J, Liu Y, Hong F, Zhang J, Chem. Soc. Rev., 43, 631 (2014)
- Karan M, Surya S, Suddhasatwa B, Anil V, WIREs Energy Environ., 6, e244 (2017)
- Kim HK, Lee HJ, Lim TH, Ahn SH, J. Ind. Eng. Chem., 66, 248 (2018)
- Lee HJ, Kim SK, Ahn SH, J. Ind. Eng. Chem., 54, 218 (2017)
- Jouny M, Luc W, Jiao F, J. Ind. Eng. Chem., 57, 2165 (2018)
- Sumit V, Byoungsu K, Jhong HRM, Sichao M, Kenis PJA, ChemSusChem, 9, 1972 (2016)
- Narayanan SR, Haines B, Soler J, Valdez TI, J. Electrochem. Soc., 158(2), A167 (2011)
- Alvarez-Guerra M, Quintanilla S, Irabien A, Chem. Eng. J., 207, 278 (2012)
- Alvarez-Guerra M, Del Castillo A, Irabien A, Chem. Eng. Res. Des., 92(4), 692 (2014)
- Choi SY, Jeong SK, Kim HJ, Baek IH, Park KT, ACS Sustain. Chem. Eng., 4, 1311 (2016)
- Kim YE, Yun HS, Jeong SK, Yoon YI, Nam SC, Park KT, J. Nanosci. Nanotechnol., 18, 1266 (2018)
- Lee W, Kim YE, Youn MH, Jeong SK, Park KT, Angew. Chem.-Int. Edit., 57, 6883 (2018)
- Du DW, Lan R, Humphreys J, Tao SW, J. Appl. Electrochem., 47(6), 661 (2017)
- Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E, Chem. Rev., 115(23), 12936 (2015)
- Fink J, Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids, Gulf Professional Publishing, Boston, U.S, 2012.
- Zhang S, Kang P, Meyer TJ, J. Am. Chem. Soc., 136(5), 1734 (2014)
- Lee S, Ocon JD, Son YI, Lee J, J. Phys. Chem. C, 119, 4884 (2015)
- Fu YS, Li YN, Zhang X, Liu YY, Qiao JL, Zhang JJ, Wilkinson DP, Appl. Energy, 175, 536 (2016)
- Bashir S, Hossain SS, Rahman SU, Ahmed S, Amir AA, Hossain MM, J. CO2 Util., 16, 346 (2016)
- Zhao C, Wang J, Goodenough JB, Electrochem. Commun., 65, 9 (2016)
- Kumar B, Atla V, Brian JP, Kumari S, Nguyen TQ, Sunkara M, Spurgeon JM, Angew. Chem.-Int. Edit., 56, 3645 (2017)
- Yu JL, Liu HY, Song SQ, Wang Y, Tsiakaras P, Appl. Catal. A: Gen., 545, 159 (2017)
- Daiyan R, Lu X, Saputera WH, Ng YH, Amal R, ACS Sustain. Chem. Eng., 6, 1670 (2018)
- Li F, Chen L, Knowles GP, MacFarlane DR, Zhang J, Angew. Chem.-Int. Edit., 56, 505 (2017)
- Yang H, Huang Y, Deng J, Wu Y, Han N, Zha C, Li L, Li Y, J. Energy Chem., 37, 93 (2019)
- Wu J, Sun SG, Zhou XD, Nano Energy, 27, 225 (2016)
- Basu S, Shegokar A, Biswal D, J. CO2 Util., 18, 80 (2017)
- Pourbaix M, Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Houston, TX, 1974.
- Trueba M, Trasatti SP, Eur. J. Inorg. Chem., 2005, 3393 (2005)
- Zhao A, Ying W, Zhang H, Ma H, Fang D, Catal. Commun., 17, 34 (2012)