화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.57, No.6, 874-882, December, 2019
미이용 산림바이오매스 및 폐목재의 기포 유동층 Air 가스화 특성 연구
Air Gasification Characteristics of Unused Woody Biomass in a Lab-scale Bubbling Fluidized Bed Gasifier
E-mail:,
초록
본 연구에서는, Lab-scale 기포 유동층 가스화기(직경 : 0.11 m, 높이 : 0.42 m)에서 미이용 산림 바이오매스 4종과 폐목재 1종의 가스화 특성을 살펴보았다. 실험은 온도와 연료 주입량을 각각 800 oC, 1 kg/h로 고정하고, ER 0.15-0.3, 가스 유속 2.5-5 U0 /Umf으로 변화시키면서 진행했다. 층 물질로는 silica sand와 olivine을 사용하였다. 생성 가스의 조성은 NDIR 분석기와 GC를 통해 분석하였으며, 분석 결과 평균적으로 H2 3~4 vol%, CO 15~16 vol%, CH4 4 vol%, CO2 18~19 vol.%으로 미이용 산림바이오매스와 폐목재 모두 비슷한 조성을 보였으며, 생성 가스의 평균 저위발열량은 1193~1301 kcal/Nm3을, 고위발열량은 1262~1377 kcal/Nm3을 나타내었다. 또한, 타르 저감 효과를 알아보고자 층 물질로 olivine을 사용 시 silica sand에 비해 생성 가스 내 C2 이상 성분이 대부분 감소하였고, H2 함량이 증가하여 타르의 cracking 반응이 생겼음을 확인하였다. 비응축성 타르는 72% (1.24 → 0.35 g/Nm3), 응축성 타르는 27% (4.4 → 3.2 g/Nm3)가량 감소하는 효과를 확인하였다.
In this study, the gasification characteristics of four types of unused woody biomass and one waste wood in a lab-scale bubbling fluidized bed gasifier (Diameter: 0.11 m, Height: 0.42 m) were investigated. Effect of equivalence ratio (ER) of 0.15-0.3 and gas velocity of 2.5-5 U0/Umf are determined at the constant temperature of 800 °C and fuel feeding rate of 1 kg/h. The silica sand particle having an average particle size of 287 μm and olivine with an average particle size of 500 μm were used as the bed material, respectively. The average product gas composition of samples is as follows; H2 3-4 vol.%, CO 15-16 vol.%, CH4 4 vol.% and CO2 18-19 vol.% with a lower heating value (LHV) of 1193-1301 kcal/ Nm3 and higher heating value (HHV) of 1262-1377 kcal/Nm3. In addition, it was found that olivine reduced most of C2 components and increased H2 content compared to silica sand, resulting in cracking reaction of tar. The non-condensable tar decreases by 72% (1.24 → 0.35 g/Nm3) and the condensable tar decreases by 27% (4.4 → 3.2 g/Nm3).
  1. Demirbas A, Arin G, Energy Sources, 24(5), 471 (2002)
  2. LeValley TL, Richard AR, Fan MH, Int. J. Hydrog. Energy, 39(30), 16983 (2014)
  3. De Filippis P, Borgianni C, Paolucci M, Pochetti F, Biomass Bioenerg., 27(3), 247 (2004)
  4. Ahmed II, Gupta AK, Appl Energy, 91, 75 (2012)
  5. International Energy Agency (IEA), “Technology Roadmap: Delivering Sustainable Bioenergy,” Paris(2017).
  6. Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S, Renew. Sust. Energ. Rev., 15, 2262 (2011)
  7. Heidenreich S, Foscolo PU, Prog. Energy Combust. Sci., 46, 72 (2015)
  8. http://www.forest.go.kr/kfsweb/kfs/idx/Index.do.
  9. http://www.law.go.kr/admRulInfoP.do?admRulSeq=2100000110450.
  10. Dincer I, Int. J. Hydrog. Energy, 37(2), 1954 (2012)
  11. Das D, Veziroglu TN, Int. J. Hydrog. Energy, 26(1), 13 (2001)
  12. Kalinci Y, Hepbasli A, Dincer I, Int. J. Hydrog. Energy, 34, 8799 (2007)
  13. Sheth PN, Babu BV, Bioresour. Technol., 100(12), 3127 (2009)
  14. Foust TD, Aden A, Dutta A, Phillips S, Cellulose, 16, 547 (2009)
  15. Anukam A, Mamphweli S, Reddy P, Meyer E, Okoh O, Renew. Sust. Energ. Rev., 66, 775 (2016)
  16. Brown RC, Chichester, UK, Wiley, 47-77(2011).
  17. Warnecke R, Biomass Bioenerg., 18(6), 489 (2000)
  18. Rao TR, Bheemarasetti JVR, Energy, 26(6), 633 (2001)
  19. Milne TA, Evans RJ, Abatzoglou N, National Renewable Energy Laboratory Report, NREL/TP-570-23357 (1998).
  20. Anis S, Zainal ZA, Renew. Sust. Energ. Rev., 15, 2355 (2011)
  21. Li C, Suzuki K, Renew. Sust. Energ. Rev., 13, 594 (2009)
  22. Yung MM, Magrini-Bair KA, Parent YO, Carpenter DL, Feik CJ, Gaston KR, Pomeroy MD, Phillips SD, Catal. Lett., 134(3-4), 242 (2010)
  23. Magrini-Bair KA, Czernik S, French R, Parent YO, Chornet E, Dayton DC, Feik C, Bain R, Appl. Catal. A: Gen., 318, 199 (2007)
  24. Rapagna S, Jand N, Kiennemann A, Foscolo PU, Biomass Bioenerg., 19(3), 187 (2000)
  25. An SH, Park JY, Tae JG, Rhee YW, Korean Chem. Eng. Res., 55(1), 99 (2017)
  26. Bak YC, Choi JH, Korean Chem. Eng. Res., 56(5), 725 (2018)
  27. Yun YS, Chung SW, Lee SJ, Korean Chem. Eng. Res., 57(4), 461 (2019)
  28. Benedikt F, Fuchs J, Schmid JC, Muller S, Hofbauer H, Korean J. Chem. Eng., 34(9), 2548 (2017)
  29. Yoo HM, Lee JS, Yang WS, Choi HS, Jang HN, Seo YC, Korean J. Chem. Eng., 35(3), 654 (2018)
  30. Yun Ym, Seo MW, Ra HW, Yoon SJ, Mun TY, Moon JH, Kook JW, Kim YK, Lee JG, Kim JH, Korean J. Chem. Eng., 34(10), 2756 (2017)
  31. Neeft JPA, “Rationale for Setup of Impinger Train,” CEN BT/TF 143(2005).
  32. Mun TY, Ph.D. Dissertation, University of Seoul, Republic of Korea, Seoul(2013).
  33. Jo WJ, Jeong SH, Park SJ, Choi YT, Lee DH, The Korean J. Chem. Eng., 53, 783-791(2015).
  34. Kim YD, Yang CW, Kim BJ, Kim KS, Lee JW, Moon JH, Yang W, Yu TU, Do Lee U, Appl. Energy, 112, 414 (2013)
  35. Kitzler H, Pfeifer C, Hofbauer H, Fuel Process. Technol., 92(5), 908 (2011)
  36. Kook JW, Choi HM, Kim BH, Ra HW, Yoon SJ, Mun TY, Kim JH, Kim YK, Lee JG, Seo MW, Fuel, 181, 942 (2016)
  37. Subramanian P, Sampathrajan A, Venkatachalam P, Bioresour. Technol., 102(2), 1914 (2011)
  38. Narvaez I, Orio A, Aznar MP, Corella J, Ind. Eng. Chem. Res., 35(7), 2110 (1996)
  39. Sun S, Zhao Y, Su F, Ling F, Korean J. Chem. Eng., 26(2), 528 (2009)
  40. Makwana JP, Joshi AK, Athawale G, Singh D, Mohanty P, Bioresour. Technol., 178, 45 (2015)
  41. Sanz A, Nieva D, Dufour J, Int. J. Hydrog. Energy, 40(15), 5074 (2015)
  42. Larsson A, Israelsson M, Lind F, Seemann M, Thunman H, Energy Fuels, 28(4), 2632 (2014)