Macromolecular Research, Vol.29, No.2, 157-163, February, 2021
Conductive and Stable Crosslinked Anion Exchange Membranes Based on Poly(arylene ether sulfone)
E-mail:,
Highly conductive and stable anion exchange membranes (AEMs) are important components of high-performance anion exchange membrane fuel cells (AEMFCs). Here, we report the use of crosslinked poly(arylene ether sulfone) (PAES) AEMs containing quaternary ammonium (QA) and triazolium cations. The crosslinked PAEStriazole- hydroxide membrane (cPAES-TA-OH) had a higher ion exchange capacity (IEC) than that of the non-crosslinked membrane (PAES-TA-OH) owing to the presence of triazolium cations. The IEC values of cPAES-TA-OH and PAES-TA-OH were 1.75 and 1.31 meq/g, respectively. The IEC value affects the water uptake and swelling ratio of a membrane. The water uptake and swelling ratio of cPAES-TA-OH were higher than those of PAES-TA-OH at 30 °C and 80 °C. In addition, hydroxide conductivity and membrane stability were enhanced by crosslinking; the hydroxide conductivity of cPAES-TA-OH was 92.1 mS/cm at 80 °C under 95% RH (in contrast to 86.2 mS/cm for PAES-TA-OH), and its conductivity retention was 67% after treating with 1M NaOH at 80 °C for 24 h (in contrast to 51% for PAES-TA-OH).
- Ran J, Wu L, Ru Y, Hu M, Din L, Xu T, Polym. Chem., 6, 5809 (2015)
- Jannasch P, Weiber EA, Macromol. Chem. Phys., 217, 1108 (2016)
- Yun DY, Yim TE, Kwon OJ, Kim TH, Macromol. Res., 27(10), 1050 (2019)
- Varcoe JR, Slade RC, Fuel Cells, 15, 187 (2005)
- Choi JE, Jang JH, Chae JE, Park HY, Lee SY, Jang JH, Kim JY, Henkensmeier D, Yoo SJ, Lee KY, Sung YE, Kim HJ, Macromol. Res., 28(3), 275 (2020)
- Liu WC, Liu L, Liao JY, Wang LH, Li NW, J. Membr. Sci., 536, 133 (2017)
- Lee KH, Cho DH, Kim YM, Moon SJ, Seong JG, Shin DW, Sohn JY, Kim JF, Lee YM, Energy Environ. Sci., 10, 275 (2017)
- Tuckerman ME, Marx D, Parrinello M, Nature, 417, 925 (2002)
- Noh S, Jeon JY, Adhikari S, Kim YS, Bae C, Accounts Chem. Res., 52, 2745 (2019)
- Ge Q, Ran J, Miao J, Yang Z, Xu T, ACS Appl. Mater. Interfaces, 7, 28545 (2015)
- Li N, Guiver MD, Binder WH, ChemSusChem, 6, 1376 (2013)
- Liu L, He S, Zhang S, Zhang M, Guiver MD, Li N, ACS Appl. Mater. Interfaces, 8, 4651 (2016)
- Ahn MK, Lee B, Jang J, Min CM, Lee SB, Pak C, Lee JS, J. Membr. Sci., 560, 58 (2018)
- Zeng L, Zhao TS, J. Power Sources, 303, 354 (2016)
- Lee SB, Min CM, Jang J, Lee JS, Polymer, 192, 122331 (2020)
- Han JJ, Zhu L, Pan J, Zimudzi TJ, Wang Y, Peng YQ, Hickner MA, Zhuang L, Macromolecules, 50(8), 3323 (2017)
- Jang J, Kim DH, Ahn MK, Min CM, Lee SB, Byun J, Pak C, Lee JS, J. Membr. Sci., 595, 117508 (2020)
- Hu H, Dong T, Sui Y, Li N, Ueda M, Wang L, Zhang X, J. Mater. Chem. A, 6, 3560 (2018)
- Ma W, Zhao C, Yang J, Ni J, Wang S, Zhang N, Lin H, Wang J, Zhang G, Li Q, Na H, Energy Environ. Sci., 5, 7617 (2012)
- Chen N, Long C, Li Y, Lu C, Zhu H, ACS Appl. Mater. Interfaces, 10, 15720 (2018)
- Wang JJ, He GH, Wu XM, Yan XM, Zhang YP, Wang YD, Du L, J. Membr. Sci., 459, 86 (2014)
- Teresa Perez-Prior M, Urena N, Tannenberg M, del Rio C, Levenfeld B, J. Polym. Sci. B: Polym. Phys., 55(17), 1326 (2017)
- Weiber EA, Meis D, Jannasch P, Polym. Chem., 6, 1986 (2015)
- Zapata F, Gonzalez L, Caballero A, Alkorta I, Elguero J, Molina P, Chem. Eur. J., 21, 9797 (2015)
- Zhu L, Zimudzi TJ, Li N, Pan J, Lin B, Hickner M, Polym. Chem., 7, 2464 (2016)
- Li YS, Zhao TS, Yang WW, Int. J. Hydrog. Energy, 35(11), 5656 (2010)
- Hu EN, Lin CX, Liu fH, Yang Q, Li L, Zhang QG, Zhu AM, Liu QL, ACS Appl. Energy Mater., 1, 3479 (2018)
- Macomber C, Boncella J, Pivovar B, Rau J, J. Therm. Anal. Calorim., 93, 225 (2008)
- Einsla BR, Chempath S, Pratt L, Boncella J, Rau J, Macomber C, Pivovar B, ECS Trans., 11, 1173 (2007)