화학공학소재연구정보센터
Macromolecular Research, Vol.29, No.2, 157-163, February, 2021
Conductive and Stable Crosslinked Anion Exchange Membranes Based on Poly(arylene ether sulfone)
E-mail:,
Highly conductive and stable anion exchange membranes (AEMs) are important components of high-performance anion exchange membrane fuel cells (AEMFCs). Here, we report the use of crosslinked poly(arylene ether sulfone) (PAES) AEMs containing quaternary ammonium (QA) and triazolium cations. The crosslinked PAEStriazole- hydroxide membrane (cPAES-TA-OH) had a higher ion exchange capacity (IEC) than that of the non-crosslinked membrane (PAES-TA-OH) owing to the presence of triazolium cations. The IEC values of cPAES-TA-OH and PAES-TA-OH were 1.75 and 1.31 meq/g, respectively. The IEC value affects the water uptake and swelling ratio of a membrane. The water uptake and swelling ratio of cPAES-TA-OH were higher than those of PAES-TA-OH at 30 °C and 80 °C. In addition, hydroxide conductivity and membrane stability were enhanced by crosslinking; the hydroxide conductivity of cPAES-TA-OH was 92.1 mS/cm at 80 °C under 95% RH (in contrast to 86.2 mS/cm for PAES-TA-OH), and its conductivity retention was 67% after treating with 1M NaOH at 80 °C for 24 h (in contrast to 51% for PAES-TA-OH).
  1. Ran J, Wu L, Ru Y, Hu M, Din L, Xu T, Polym. Chem., 6, 5809 (2015)
  2. Jannasch P, Weiber EA, Macromol. Chem. Phys., 217, 1108 (2016)
  3. Yun DY, Yim TE, Kwon OJ, Kim TH, Macromol. Res., 27(10), 1050 (2019)
  4. Varcoe JR, Slade RC, Fuel Cells, 15, 187 (2005)
  5. Choi JE, Jang JH, Chae JE, Park HY, Lee SY, Jang JH, Kim JY, Henkensmeier D, Yoo SJ, Lee KY, Sung YE, Kim HJ, Macromol. Res., 28(3), 275 (2020)
  6. Liu WC, Liu L, Liao JY, Wang LH, Li NW, J. Membr. Sci., 536, 133 (2017)
  7. Lee KH, Cho DH, Kim YM, Moon SJ, Seong JG, Shin DW, Sohn JY, Kim JF, Lee YM, Energy Environ. Sci., 10, 275 (2017)
  8. Tuckerman ME, Marx D, Parrinello M, Nature, 417, 925 (2002)
  9. Noh S, Jeon JY, Adhikari S, Kim YS, Bae C, Accounts Chem. Res., 52, 2745 (2019)
  10. Ge Q, Ran J, Miao J, Yang Z, Xu T, ACS Appl. Mater. Interfaces, 7, 28545 (2015)
  11. Li N, Guiver MD, Binder WH, ChemSusChem, 6, 1376 (2013)
  12. Liu L, He S, Zhang S, Zhang M, Guiver MD, Li N, ACS Appl. Mater. Interfaces, 8, 4651 (2016)
  13. Ahn MK, Lee B, Jang J, Min CM, Lee SB, Pak C, Lee JS, J. Membr. Sci., 560, 58 (2018)
  14. Zeng L, Zhao TS, J. Power Sources, 303, 354 (2016)
  15. Lee SB, Min CM, Jang J, Lee JS, Polymer, 192, 122331 (2020)
  16. Han JJ, Zhu L, Pan J, Zimudzi TJ, Wang Y, Peng YQ, Hickner MA, Zhuang L, Macromolecules, 50(8), 3323 (2017)
  17. Jang J, Kim DH, Ahn MK, Min CM, Lee SB, Byun J, Pak C, Lee JS, J. Membr. Sci., 595, 117508 (2020)
  18. Hu H, Dong T, Sui Y, Li N, Ueda M, Wang L, Zhang X, J. Mater. Chem. A, 6, 3560 (2018)
  19. Ma W, Zhao C, Yang J, Ni J, Wang S, Zhang N, Lin H, Wang J, Zhang G, Li Q, Na H, Energy Environ. Sci., 5, 7617 (2012)
  20. Chen N, Long C, Li Y, Lu C, Zhu H, ACS Appl. Mater. Interfaces, 10, 15720 (2018)
  21. Wang JJ, He GH, Wu XM, Yan XM, Zhang YP, Wang YD, Du L, J. Membr. Sci., 459, 86 (2014)
  22. Teresa Perez-Prior M, Urena N, Tannenberg M, del Rio C, Levenfeld B, J. Polym. Sci. B: Polym. Phys., 55(17), 1326 (2017)
  23. Weiber EA, Meis D, Jannasch P, Polym. Chem., 6, 1986 (2015)
  24. Zapata F, Gonzalez L, Caballero A, Alkorta I, Elguero J, Molina P, Chem. Eur. J., 21, 9797 (2015)
  25. Zhu L, Zimudzi TJ, Li N, Pan J, Lin B, Hickner M, Polym. Chem., 7, 2464 (2016)
  26. Li YS, Zhao TS, Yang WW, Int. J. Hydrog. Energy, 35(11), 5656 (2010)
  27. Hu EN, Lin CX, Liu fH, Yang Q, Li L, Zhang QG, Zhu AM, Liu QL, ACS Appl. Energy Mater., 1, 3479 (2018)
  28. Macomber C, Boncella J, Pivovar B, Rau J, J. Therm. Anal. Calorim., 93, 225 (2008)
  29. Einsla BR, Chempath S, Pratt L, Boncella J, Rau J, Macomber C, Pivovar B, ECS Trans., 11, 1173 (2007)