화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.33, No.1, 90-95, February, 2022
우슬 줄기 부산물을 이용한 아연과 철 이온의 제거효율 향상
Enhanced Removal Efficiency of Zinc and Iron Ions Using By-Product of Achyanthes Japonica Stem
E-mail:
초록
본 연구에서는 한약재 부산물로서 우슬 줄기를 사용하여 바이오차를 제조하였다. 제조된 바이오차를 수처리 공정에 적용하기 위하여, 수중에 용해된 아연과 철 이온의 흡착 특성을 고찰하였다. 70과 100 mg/L 아연 이온을 제거하고자 2 h 실험이 이루어졌을 때, 각각 32.3과 31.0 mg/g 흡착량을 구할 수 있었다. 위의 실험 결과, 아연 이온의 제거공정에서 우슬 줄기 바이오차는 활성탄소 보다 3배 이상의 흡착량을 나타내었다. 또한, 70과 100 mg/L 철 이온을 처리하고자 2 h 실험이 수행되었을 때, 각각 50.1과 54.3 mg/g의 높은 흡착량을 얻었다. 그리고, 아연과 철 이온의 제거효율을 향상시키고자, 우슬 줄기 바이오차에 수증기 활성화 공정이 이루어졌다. 그 결과, 70과 100 mg/L 아연 이온의 제거효율이 각각 80과 60%로 증가되었다. 또한, 70과 100 mg/L 철 이온의 제거효율은 각각 100과 82%로 향상되었다. 그리고 수증기로 활성화된 우슬 줄기 바이오차는 미처리된 우슬 줄기 바이오차와 비교하였을 때, 비표면적이 37.3배 증가되었으며 총 기공부피와 대세공 기공부피가 각각 28.4, 136배 향상되었다. 따라서 이러한 실험 결과들은 수중에 함유된 아연과 철 이온을 경제적이고 실용적으로 흡착 처리하는 기술에 사용될 수 있을 것이다.
In the present work, biochar was prepared using Achyanthes japonica stem as a by-product of herbal medicine. In order to apply the prepared biochar to water treatment process, the adsorption characteristics of zinc and iron ions dissolved in water were investigated. When the experiments were performed for 2 h to remove 70 and 100 mg/L of zinc ions, the adsorption amounts of 32.3 and 31.0 mg/g were obtained, respectively. It was also found that the adsorption amount of Achyanthes japonica stem biochar for the removal process of zinc ion was three times higher than that of the activated carbon. In addition, when the experiments were performed for 2 h to treat 70 and 100 mg/L of iron ions, high adsorption amounts of 50.1 and 54.3 mg/g were achieved, respectively. In order to further enhance the removal efficiency of zinc and iron ions, a steam activation process was performed on the biochar of Achyanthes japonica stem. As a result, the removal efficiencies of 70 and 100 mg/L of zinc ions increased to 80 and 60%, respectively. Also, the removal efficiencies of 70 and 100 mg/L of iron ions were improved to 100 and 82%, respectively. In addition, when the biochar of Achyanthes japonica stem with a steam activation was compared with the untreated biochar of Achyanthes japonica stem, the specific surface area increased 37.3 times, and the total and macroporpous pore volumes were improved by 28.4 and 136 times, respectively. Therefore, the results can be used for economically and practically adsorbing zinc and iron ions contained in water.
  1. Bhatnagar A, Minocha AK, Colloids Surf. B: Biointerfaces, 76, 544 (2010)
  2. Kim KH, Lee NH, Paik IK, Park JH, Yang JK, J. Kor. Soi. Environ. Eng., 32(5), 417 (2010)
  3. Kim MJ, Choi JH, Choi TR, Choi SS, Ha JH, Lee YS, Appl. Chem. Eng., 31(5), 526 (2020)
  4. Kstsou E, Malamis S, Haralambous K, J. Hazard. Mater., 1812, 27 (2010)
  5. Dimirkou A, Water Res., 41, 2763 (2007)
  6. Fu F, Wang Q, J. Environ. Manage., 92, 407 (2011)
  7. Shin KY, Hong JY, Jang J, J. Hazard. Mater., 190(1-3), 36 (2011)
  8. Ali S, Shah IA, Ahmad A, Nawab J, Huang H, Sci. Total Environ., 655, 1270 (2019)
  9. bin Jusoh A, Cheng WH, Low WM, Nora'aini A, Noor MJMM, Desalination, 182(1-3), 347 (2005)
  10. Tekerlekopoulou AG, Pavlou S, Vayenas DV, J. Chem. Technol. Biotechnol., 88(5), 751 (2013)
  11. Khatri N, Tyagi S, Rawtani D, J. Water Process Eng., 19, 291 (2017)
  12. Jang YY, Sharkis SJ, Blood, 110, 3056 (2007)
  13. shao L, Li H, Pazhanisamy SK, Meng A, Wang Y, Zhou D, Int. J. Hematol., 94, 24 (2011)
  14. Sarin P, Snoeyink VL, Bebee J, Jim KK, Beckett MA, Kriven WM, Clement JA, Water Res., 38, 1259 (2004)
  15. Al-Anber MA, Desalination, 250(3), 885 (2010)
  16. Loan L, Newman OMG, Cooper RMG, Farrow JB, Parkinson GM, Hydrometallurgy, 81, 104 (2006)
  17. Das B, Hazarika P, Saikia G, Kalita H, Goswami DC, Das HB, Dube SN, Dutta RK, J. Hazard. Mater., 141(3), 834 (2007)
  18. Shin HS, Lee CH, Lee YS, Kang KH, J. Kor. Soi. Environ. Eng., 27(5), 535 (2005)
  19. Bailey SE, Olin TJ, Bricka RM, Adrian DD, Water Res,, 33(11), 2469 (1999)
  20. Choi SS, Appl. Chem. Eng., 25(3), 307 (2014)
  21. Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z, Chemosphere, 125, 70 (2015)
  22. Xu X, Cao X, Zhao L, Chemosphere, 92, 955 (2013)
  23. Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R, Water Res., 46, 854 (2012)
  24. Qian L, Chen B, Environ. Sci. Technol., 47, 8759 (2013)
  25. Mohan D, Sarswat A, Ok YS, Pittman CUJ, Technol., 160, 191 (2014)
  26. Chen XC, Chen GC, Chen LG, Chen YX, Lehmann J, McBride MB, Hay AG, Bioresour. Technol., 102(19), 8877 (2011)
  27. Liu ZG, Zhang FS, J. Hazard. Mater., 167(1-3), 933 (2009)
  28. Cho HS, Kang SW, Kim JH, Choi MJ, Yu HW, Park E, Chun HS, J. Kor. Soi. Biotech. and Bioeng, 29(1), 29 (2014)
  29. Kwon TN, Jeon C, J. Ind. Eng. Chem., 19(1), 68 (2013)
  30. Kim YH, Park JY, Yoo YJ, Kwak JW, Process Biochem., 34(6), 647 (1999)
  31. Uchimiya M, Chang S, Klasson KT, J. Hazard. Mater., 190(1-3), 432 (2011)
  32. Li H, Dong X, Silva EBD, Oliveira LMD, Chen Y, Ma LQ, Chemosphere, 178, 466 (2017)