화학공학소재연구정보센터
Clean Technology, Vol.28, No.1, 1-8, March, 2022
석유코크스 활용 블루수소생산을 위한 Water Gas Shift 촉매의 조업조건에 따른 반응특성
Reaction Characteristics of Water Gas Shift Catalysts in Various Operation Conditions of Blue Hydrogen Production Using Petroleum Cokes
E-mail:
초록
미활용 저급자원인 석유코크스를 대상으로 고순도의 수소 생산을 위한 수성가스전이반응에 적용가능성을 확인하기 위하여 Cu/ZnO/MgO/Al2O3 (CZMA) 촉매를 공침법을 사용하여 제조하였다. 제조된 촉매는 BET, H2-TPR을 사용하여 분석되었다. 촉매의 반응성 테스트는 고농도의 CO를 포함하는 합성가스로부터 단일 Low Temperature Shift 반응을 거치는 경우와 High Temperature Shift 반응을 거친 후 스팀의 응축 없이 즉시 LTS 반응을 거치는 두 가지의 경우를 비교 및 분석하였다. 두 조건에 서 steam/CO 비, 유량 및 유속, 온도에 따른 반응특성을 확인하였다. 전환된 저농도의 CO와 스팀이 응축 없이 LTS로 즉시 주 입되는 경우 많은 양의 스팀이 존재함에도 불구하고 대부분의 조건에서 다소 낮은 CO 전환율을 나타냈다. 또한 steam/CO비, 온도 및 유속에 대한 영향이 크게 나타나 최적의 조업조건을 결정하기에 추가적인 분석이 요구되었다. 반면, 고농도의 CO 기 체를 포함하는 조건에서는 탄소침적 또는 촉매의 활성 저하가 나타나지 않았으며 대부분의 조건에서 높은 CO 전환율을 나타 내었다. 결론적으로 Cu/ZnO/MgO/Al2O3 촉매를 적용하여 고농도의 CO를 포함하는 합성가스 조성에서 적절한 조업조건을 적 용시키면 단일 LTS 반응을 적용해도 고농도의 CO를 CO2로 충분히 전환 가능함을 확인하였다.
To confirm the applicability of the water gas shift reaction for the production of high purity hydrogen for petroleum cokes, an unutilized low grade resource, Cu/ZnO/MgO/Al2O3 (CZMA), catalyst was prepared using the co-precipitation method. The prepared catalyst was analyzed using BET and H2-TPR. Catalyst reactivity tests were compared and analyzed in two cases: a single LTS reaction from syngas containing a high concentration of CO, and an LTS reaction immediately after the syngas passed through a HTS reaction without condensation of steam. Reaction characteristics in accordance with steam/CO ratio, flow rate, and temperature were confirmed under both conditions. When the converted low concentration of CO and steam were immediately injected into the LTS, the CO conversion was rather low in most conditions despite the presence of large amounts of steam. In addition, because the influence of the steam/CO ratio, temperature, and flow rate was significant, additional analysis was required to determine the optimal operating conditions. Meanwhile, carbon deposition or activity degradation of the catalyst did not appear under high CO concentration, and high CO conversion was exhibited in most cases. In conclusion, it was confirmed that when the Cu/ZnO/MgO/Al2O3 catalyst and the appropriate operating conditions were applied to the syngas composition containing a high concentration of CO, the high concentration of CO could be converted in sufficient amounts into CO2 by applying a single LTS reaction.
  1. Park NK, Kim MK, Lee SJ, Yun YS, J. Energy Climate Change, 16(2), 171 (2021)
  2. Abe JO, Popoola API, Ajenifuja E, Popoola OM, Int. J. Hydrog. Energy, 44(29), 15072 (2019)
  3. Yim DW, Trans. Korean Hydrogen New Energy Society, 31(3), 265 (2020)
  4. Kim JH, Park DK, Kim JH, Kim HJ, Kim HS, Kang SH, Ryu JH, J. Energy & Climate Change, 16(2), 103 (2021)
  5. Atilhan S, Park S, El-Halwagi MM, Atilhan M, Moore M, Nielsen RB, Curr. Opin. Chem. Eng., 31, 100668 (2020)
  6. Noussan M, Raimondi PP, Scita R, Hafner M, Sustainability, 13(1), 298 (2021)
  7. Na HS, Jeong DW, Jang WJ, Lee YL, Roh HS, Trans. Korean Hydrogen New Energy Society, 25(3), 227 (2014)
  8. Park JH, Im HB, Hwang RH, Baek JH, Koo KY, YI KB, Trans. Korean Hydrogen New Energy Society, 28(1), 1 (2017)
  9. Park JH, Baek JH, Hwang RH, Yi KB, Clean Technol., 23(4), 429 (2017)
  10. Rhodes C, Hutchings GJ, Ward AM, Catal. Today, 23(1), 43 (1995)
  11. Byun CK, Im HB, Park J, Baek J, Jeong J, Yoon WR, Yi KB, Clean Technol., 21(3), 200 (2015)
  12. Stone FS, Waller D, Top. Catal., 22(3), 305 (2003)
  13. RJ BS, Loganathan M, Shantha MS, Int. J. Chem. React. Eng., 8(1) (2010)
  14. Baek JH, Jeong JM, Park JH, Yi KB, Rhee YW, Trans. Korean Hydrogen New Energy Society, 26(5), 423 (2015)
  15. Saito M, Murata K, Catal. Surv. Asia, 8(4), 285 (2004)
  16. Gokhale AA, Dumesic JA, Mavrikakis M, J. Am. Chem. Soc., 130(4), 1402 (2008)
  17. Li Y, Fu Q, Flytzani-Stephanopoulos M, Appl. Catal. B: Environ., 27(3), 179 (2000)
  18. Shishido T, Yamamoto M, Li D, Tian Y, Morioka H, Honda M, Sano T, Takehira K, Appl. Catal. A: Gen., 303(1), 62 (2006)
  19. Shishido T, Yamamoto Y, Morioka H, Takaki K, Takehira K, Appl. Catal. A: Gen., 263(2), 249 (2004)
  20. Wang X, Gorte RJ, Wagner JP, J. Catal., 212(2), 225 (2002)
  21. Twigg MV, Spencer MS, Appl. Catal. A: Gen., 212(1-2), 161 (2001)
  22. Kumar P, Idem R, Energy Fuels, 21(2), 522 (2007)
  23. Aika KI, Takano T, Murata S, J. Catal., 136(1), 126 (1992)
  24. Lee SW, Ihm SK, Ind. Eng. Chem. Res., 52(44), 15359 (2013)
  25. Baek JI, Yang SR, Eom TH, Lee JB, Ryu CK, Fuel, 144, 317 (2015)
  26. Nishida K, Li D, Zhan Y, Shishido T, Oumi Y, Sano T, Takehira K, Appl. Clay Sci., 44(3-4), 211 (2009)
  27. Shishido T, Yamamoto M, Atake I, Li D, Tian Y, Morioka H, Honda M, Sano T, Takehira K, J. Mol. Catal. A-Chem., 253(1-2), 270 (2006)
  28. Park JH, Baek JH, Jo GH, Rasheed HU, Yi KB, Trans. Korean Hydrogen and New Energy Society, 30(2), 95 (2019)
  29. Sing KS, Pure Appl. Chem., 57(4), 603 (1985)
  30. Zhang L, Wang X, Millet JMM, Matter PH, Ozkan US, Appl. Catal. A: Gen., 351(1), 1 (2008)
  31. Lindström B, Pettersson LJ, Menon PG, Appl. Catal. A: Gen., 234(1-2), 111 (2002)
  32. Lima AAG, Nele M, Moreno EL, Andrade HMC, Appl. Catal. A: Gen., 171(1), 31 (1998)
  33. Figueiredo RT, Andrade HMC, Fierro JL, J. Mol. Catal. A-Chem., 318(1-2), 15 (2010)