Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.7, 937-942, November, 2003
TiO2광촉매를 이용한 수용액 내의 벤즈알데히드의 광분해반응
Photocatalytic Decomposition of Benzaldehyde in Aqueous Phase by TiO2 Photocatalysts
E-mail:
초록
자외선 조사하에서 TiO2를 촉매로 하여 벤즈알데히드의 광촉매 분해반응을 행하였다. 침전법에 의하여 제조된 여러 가지 TiO2 촉매의 활성을 비교하였고 반응조건에 따른 광분해 활성을 조사하였다. 벤즈알데히드의 초기농도가 6 ppm일때 P25촉매가 가장 우수하였으며, 광촉매량을 1 ~ 10 g/L로 변화시킨 결과 5 g/L에서 6 h 후에 96%의 제거율로 최대를 나타냈다. 100%의 아나타제로된 P101과 P102 촉매는 P25보다 비표면적이 4배 이상이었으나 벤즈알데히드의 분해 활성은 P25 보다 낮았다. 벤즈알데히드의 분해 메카니즘을 규명하기 위한 in-situ FT-IR 특성 분석 결과 TiO2 표면에 가스 상 O2로부터 반응종인 O-(ads)과 OH radical이 형성되고, TiO2에 흡착된 벤즈알데히드가 O-(ads)의 공격을 받아 벤젠고리가 끊어져 알코올이 형성되며, 알데히드 → 카르복시산 → nCO2 + nH2O으로 완전 산화되는 광산화 반응 mechanism을 제안할 수 있었다.
Photocatalytic degradation of benzaldehyde in aqueous phase has been investigated with various TiO2 catalysts under UV irradiation. Photocatalytic activities of P25 (Degussa) and TiO2 (P101 and P102) prepared by a precipitation method were studied as a function of reaction condition. The maximum degradation rate, 96% of benzaldehyde (initial concentration 6 ppm) was achieved with 5 g/L of P25 in the range of 1 ~ 10 g/L photocatalyst. P101 and P102 TiO2 exhibit lower activity than P25 even though these have 100% anatase phase and about 4 times higher specific surface area than P25. By in-situ FT-IR study, we could propose the photo-degradation mechanism of benzaldehyde as following sequence: at first, O-(ads) and OH radical were formed from oxygen gas on TiO2; alcohol was formed due to the cession of aromatic ring which was attacked by O-(ads); again oxidized to aldehyde, carboxylic acid and finally to carbon dioxide and water.
- Hermann JM, Guillqard C, Pichat P, Catal. Today, 17, 7 (1993)
- 신항식, 임재림, 대한환경공학회지, 17(11), 1079 (1995)
- Al-Ekabi H, Safarzadeh-Amiril A, Advanced Technology for Destruction of Organic Pollutants by Photocatalysis, Toronto, Canada, June, 4 (1990)
- Somorjai GA, Chemistry in two Dimension: Surfaces, Cornell University Press, Ithaca, U.S.A., 551 (1981)
- Larson SA, Falconer JL, Appl. Catal. B: Environ., 4(4), 325 (1994)
- El-Maazawi M, Finken AN, Nair AB, Grassian VH, J. Catal., 191(1), 138 (2000)
- Jung KT, Bell AT, J. Catal., 204(2), 339 (2001)
- Chen D, Ray AK, Water Res., 32(11), 3223 (1998)
- Matthews RW, Sol. Energy, 38(6), 405 (1987)
- Pramauro E, Prevot AB, Vincnti M, Brizzolesi G, Environ. Sci. Technol., 31(11), 3126 (1997)
- Pramauro E, Vincnti M, Augugliaro V, Palmisano L, Environ. Sci. Technol., 27, 1790 (1993)
- Cheng SF, Tsai SJ, Lee YF, Catal. Today, 26(1), 87 (1995)
- Turch CS, Ollis DF, J. Catal., 122, 178 (1990)
- Bulushev DA, Kiwi-Minsker L, Renken A, Catal. Today, 57(3-4), 231 (2000)
- D'hennezel O, Pichat P, Ollis DF, J. Photochem. Photobiol. A-Chem., 118, 197 (1998)