화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.7, 937-942, November, 2003
TiO2광촉매를 이용한 수용액 내의 벤즈알데히드의 광분해반응
Photocatalytic Decomposition of Benzaldehyde in Aqueous Phase by TiO2 Photocatalysts
E-mail:
초록
자외선 조사하에서 TiO2를 촉매로 하여 벤즈알데히드의 광촉매 분해반응을 행하였다. 침전법에 의하여 제조된 여러 가지 TiO2 촉매의 활성을 비교하였고 반응조건에 따른 광분해 활성을 조사하였다. 벤즈알데히드의 초기농도가 6 ppm일때 P25촉매가 가장 우수하였으며, 광촉매량을 1 ~ 10 g/L로 변화시킨 결과 5 g/L에서 6 h 후에 96%의 제거율로 최대를 나타냈다. 100%의 아나타제로된 P101과 P102 촉매는 P25보다 비표면적이 4배 이상이었으나 벤즈알데히드의 분해 활성은 P25 보다 낮았다. 벤즈알데히드의 분해 메카니즘을 규명하기 위한 in-situ FT-IR 특성 분석 결과 TiO2 표면에 가스 상 O2로부터 반응종인 O-(ads)과 OH radical이 형성되고, TiO2에 흡착된 벤즈알데히드가 O-(ads)의 공격을 받아 벤젠고리가 끊어져 알코올이 형성되며, 알데히드 → 카르복시산 → nCO2 + nH2O으로 완전 산화되는 광산화 반응 mechanism을 제안할 수 있었다.
Photocatalytic degradation of benzaldehyde in aqueous phase has been investigated with various TiO2 catalysts under UV irradiation. Photocatalytic activities of P25 (Degussa) and TiO2 (P101 and P102) prepared by a precipitation method were studied as a function of reaction condition. The maximum degradation rate, 96% of benzaldehyde (initial concentration 6 ppm) was achieved with 5 g/L of P25 in the range of 1 ~ 10 g/L photocatalyst. P101 and P102 TiO2 exhibit lower activity than P25 even though these have 100% anatase phase and about 4 times higher specific surface area than P25. By in-situ FT-IR study, we could propose the photo-degradation mechanism of benzaldehyde as following sequence: at first, O-(ads) and OH radical were formed from oxygen gas on TiO2; alcohol was formed due to the cession of aromatic ring which was attacked by O-(ads); again oxidized to aldehyde, carboxylic acid and finally to carbon dioxide and water.
  1. Hermann JM, Guillqard C, Pichat P, Catal. Today, 17, 7 (1993) 
  2. 신항식, 임재림, 대한환경공학회지, 17(11), 1079 (1995)
  3. Al-Ekabi H, Safarzadeh-Amiril A, Advanced Technology for Destruction of Organic Pollutants by Photocatalysis, Toronto, Canada, June, 4 (1990)
  4. Somorjai GA, Chemistry in two Dimension: Surfaces, Cornell University Press, Ithaca, U.S.A., 551 (1981)
  5. Larson SA, Falconer JL, Appl. Catal. B: Environ., 4(4), 325 (1994) 
  6. El-Maazawi M, Finken AN, Nair AB, Grassian VH, J. Catal., 191(1), 138 (2000) 
  7. Jung KT, Bell AT, J. Catal., 204(2), 339 (2001) 
  8. Chen D, Ray AK, Water Res., 32(11), 3223 (1998) 
  9. Matthews RW, Sol. Energy, 38(6), 405 (1987) 
  10. Pramauro E, Prevot AB, Vincnti M, Brizzolesi G, Environ. Sci. Technol., 31(11), 3126 (1997) 
  11. Pramauro E, Vincnti M, Augugliaro V, Palmisano L, Environ. Sci. Technol., 27, 1790 (1993) 
  12. Cheng SF, Tsai SJ, Lee YF, Catal. Today, 26(1), 87 (1995) 
  13. Turch CS, Ollis DF, J. Catal., 122, 178 (1990) 
  14. Bulushev DA, Kiwi-Minsker L, Renken A, Catal. Today, 57(3-4), 231 (2000) 
  15. D'hennezel O, Pichat P, Ollis DF, J. Photochem. Photobiol. A-Chem., 118, 197 (1998)