Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.7, 943-952, November, 2003
과불화기를 함유한 글리시딜에테르의 경화특성 및 표면특성
Curing Properties and Surface Properties of Glycidylether Containing Perfluorinated Group
E-mail:
초록
과불화기를 함유한 여러 가지 F(CF2)m(CH2)n-OH, 과 에피클로로히드린의 친핵성 치환 반응을 통하여 과불화 글리시딜 에테르를 합성하였고 FT-IR과 1H-NMR 스펙트라로 구조를 확인하였다. 합성한 과불화 글리시딜 에테르와 디-에폭시 화합물 및 경화제의 종류에 따라 열경화 특성, 발수성능 및 용매에 대한 장기 저장 성능 등을 평가하였다. 발수성능은 di-epoxy와 경화제의 구조에는 큰 차이를 나타내지 않았으며 과불화기에 결합된 메틸렌기에 따라 76° ~ 126°의 접촉각을 나타내어 메틸렌기가 길수록 발수성능이 우수하였다. 60 ℃에서 24 h 경화한 필름의 장기 저장성능을 공기 중, 헥산 및 물에서 14일 보관 후 평가한 결과, 공기 중에서 보관한 필름의 접촉각은 초기의 접촉각과 별 차이가 없었으며 헥산 및 물에 저장한 필름의 접촉각은 약 8% 감소하였다. 또한, 코팅 표면의 XPS분석 결과, F(1s) 원자가 표면에 가장 많이 존재하여 과불화기가 코팅 면 바깥으로 배열됨을 알 수 있었다.
A series of perfluorinated glycidyl ethers were synthesized by nucleophilic substitution reaction between F(CF2)m(CH2)n-OH and epichlorohydrin. And the structures were characterized by 1H-NMR, FT-IR, and GC. The perfluoro glycidyl ethers were cured with several di-epoxys and amine curing agents. The cured epoxys were characterized by thermal properties through DSC, water-repellency with contact angle and storage stabilities in the air, water, and hexane. The water-repellent properties depended on the length of methylene units, showing the range of 76 ℃ (shorter methylene unit) to 126° (longer methylene unit), but no effects of the structures of di-epoxys and curing agents were observed. In the case of the epoxy cured for 24 h at 60 ℃, the storage stabilities of water-repellent in the air were very stable. However, those properties after storage for 14 days in the water and hexane solvent were unstable by 8% reduction in initial properties. From the results of XPS, the atom of F(1s) was abundantly located in the surface of the cured epoxy.
- Ramharack R, Nguyen TH, J. Polym. Sci. C: Polym. Lett., 25, 93 (1987)
- Maekawa T, Kamata S, Matsuo M, J. Fluor. Chem., 54, 84 (1991)
- Katsuragawa T, Chiba E, Okada K, Tani K, Tomono H, J. Appl. Phys., 34, 649 (1995)
- Katano Y, Tomono H, Nakajima T, Macromolecules, 27(8), 2342 (1994)
- Shimizu T, Tanaka Y, Ohkawa M, Kutsumizu S, Yano S, Macromolecules, 29(10), 3540 (1996)
- Park IJ, Lee SB, Choi CK, Kim KJ, J. Colloid Interface Sci., 181(1), 284 (1996)
- Park IJ, Lee SB, Choi CK, J. Appl. Polym. Sci., 54(10), 1449 (1994)
- Chen SI, Sheu YL, Sheu JL, Lee CT, Lin JS, J. Appl. Polym. Sci., 63(7), 903 (1997)
- Takahashi S, Kasemura T, Asano K, Polymer, 38(9), 2107 (1997)
- Morita M, Ogisu H, Kubo M, J. Appl. Polym. Sci., 73(9), 1741 (1999)
- Tamashita Y, Tsukahara Y, Ito H, Polym. Bull., 7, 289 (1982)
- Kassis CM, Steehler JK, Betts DE, Guan ZB, Romack TJ, Desimone JM, Linton RW, Macromolecules, 29(9), 3247 (1996)
- Park IJ, Lee SB, Choi CK, Macromolecules, 31(21), 7555 (1998)
- Mera AE, Goodwin M, Pike JK, Wynne KJ, Polymer, 40(2), 419 (1999)
- Lim CH, Choi HS, Noh ST, J. Korean Ind. Eng. Chem., 11(4), 371 (2000)
- Wang JG, Mao GP, Ober CK, Krammer EJ, Macromolecules, 30(7), 1906 (1997)
- Kim YW, Chung K, Cho W, Lee EA, Seo IO, Appl. Chem., 4(1), 109 (2000)
- Scorenson W, Campbell TW, Preparative Methods of Polymer Chemistry, Interscience, New York, 309 (1961)
- Sharpe LH, Schonhorn H, Polym. Lett., 3, 1021 (1965)
- Onda T, Shibuichi S, Satoh N, Tsujii K, Langmuir, 12(9), 2125 (1996)