Journal of the Korean Industrial and Engineering Chemistry, Vol.19, No.3, 304-309, June, 2008
1-Aza-12-Crown-4-Styrene-DVB 합성수지 흡착제에 의한 우라늄(VI) 이온의 흡착
Adsorption of Uranium (VI) Ion on the 1-Aza-12-Crown-4-Styrene-DVB Synthetic Resin Adsorbent
E-mail:
초록
1%, 2%, 4% 및 8%의 가교도를 가진 스타이렌(제4류 위험물) 디비닐벤젠 공중합체에 1-aza-12-crown-4 거대고리 리간드를 치환반응으로 결합시켜 cryptand계 이온교환 수지들을 합성하였다. 이들 수지의 합성은 염소 함량, 원소 분석, 전자현미경 그리고 IR-스펙트럼으로 확인하였다. 우라늄(UO22+) 이온의 흡착에 미치는 pH, 시간, 수지의 가교도 그리고 용매의 유전상수에 따른 영향들을 조사한 결과 우라늄 이온은 pH 3 이상에서 큰 흡착율을 보였으며, 금속 이온들의 흡착 평형은 2 h 정도였다. 한편, 에탄올 용매에서 수지에 대한 흡착 선택성은 우라늄(UO22+) > 니켈(Ni2+)>가돌리늄(Gd3+) 이온이었고, 우라늄 이온의 흡착력은 1%, 2%, 4% 및 8%의 가교도 순이었으며, 용매의 유전상수 크기에 반비례하였다.
Cryptand series ion exchange resins were synthesized with 1-aza-12-crown-4 macrocyclic ligand attached to styrene (4 series dangerous matter) divinylbenzene (DVB) copolymer with crosslink of 1%, 2%, 4% and 8% by a substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, electron micrograph, and IR-spectrum. The effects of pH, time, dielectric constant of solvent and crosslink on adsorption of uranium (UO22+) ion were investigated. The uranium ion showed a fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium (UO22+) > nickel (Ni2+) > gadolinium (Gd3+) ion. The adsorption was in order of 1%, 2%, 4%, and 8% crosslinked resin and adsorption of resin decreased in proportion to order of dielectric constant of solvents.
- Lindoy LF, Adam KR, Bladwine DS, Bashall A, McPartlin M, Powell HR, J. Chem. Soc.-Dalton Trans., 237 (1994)
- Ahearn MA, Kim J, Leong AJ, Lindoy LF, Meehan GV, Mattews OA, J. Chem. Soc.-Dalton Trans., 3591 (1996)
- Grimslery PG, Lindoy LF, Lip HC, Smith RJ, Baker JT, Aust. J. Chem., 30, 2095 (1977)
- Kim J. Ahn TH, Lee MR, Cho MH, Kim SJ, J. Kor. Chem. Soc., 43, 167 (1999)
- Chi KW, Ahn YS, Shim KT, Huh H, Ahn JS, Bull. Korean Chem. Soc., 23, 688 (2002)
- Frensdorff HK, J. Am. Chem. Soc., 93, 4684 (1971)
- Lip HC, Lindoy LF, Rea JH, Smith RJ, Henrick K, Mcpartin M, Tasker PA, Inorg. Chem., 19, 3360 (1980)
- Huh KS, Sin SG, J. Korean Ind. Eng. Chem., 9(5), 680 (1998)
- Park YJ, Park KK, Suh MY, Yoon SK, Choi KS, Jee KY, Kim WH, J. Kor. Chem. Soc., 44, 305 (2000)
- Suh MY, Sohn SC, Lee CH, Choi KS, Kim DY, Park YJ, Park KK, Jee KY, Kim WH, J. Kor. Chem. Soc., 44, 526 (2000)
- Bombieri G, Depaoli G, Inorg. Chim. Acta., 18, 123 (1976)
- Hayashita T, Lee JH, Chem S, Bartsch RA, Anal. Chem., 63, 1844 (1991)
- Blasius E, Janzen KP, Pure Appl. Chem., 54, 2115 (1982)
- Blasius E, Maurer PG, Makromol. Chem., 178, 649 (1977)
- Ha YC, J. Kor. Chem. Soc., 23, 136 (1976)
- Egawa H, Nonaka T, Ikari M, J. Appl. Polym. Sci., 29, 2045 (1984)
- Park SK, Kim JT, J. Korean Ind. Eng. Chem., 6(6), 1004 (1995)
- Lee SH, Kim KR, Shon JS, Yoo JH, Chung H, J. Ind. Eng. Chem., 5(4), 296 (1999)
- Oh JG, J. Kor. Chem. Soc., 48, 215 (2004)
- Chung KB, Kim HH, Chang SH, J. Ind. Eng. Chem., 6(1), 8 (2000)
- Suh MY, Eom TY, Suh IS, Kim SJ, Bull. Korean Chem. Soc., 8, 366 (1987)
- Marcus Y, Introduction to liquid state chemistry, John Wiley & Sons, London (1977)
- Pederson CJ, J. Am. Chem. Soc., 92, 386 (1970)