화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.4, 453-458, August, 2009
Fe-TNU-9 제올라이트 상에서 아산화질소의 분해반응 속도론
Kinetics of N2O Decomposition over Fe-TNU-9 Zeolite
E-mail:
초록
Fe의 함량을 0.5∼3.3 wt%의 범위에서 이온 교환하여 제조한 Fe-TNU-9 제올라이트 촉매상에서 N2 O 농도를 2000∼8500ppm, 반응온도를 300∼550℃범위 내에서 N2 O직접분해반응을 수행하였다.제조된 촉매는 X-선 회절분석, 질소흡착, 주사전자현미경 등으로 특성분석을 수행하였다.최적Fe함량은2.7wt%로 그 이상의 함량에 있어Fe함량은N2 O 직접분해반응에 큰 영향을 미치지 않았다. 이온교환 후에 TNU-9의 XRD 상으로는 안정된 상태를 유지하였지만 0.01 M Fe 용액하에서 이온 교환한 3.1 wt% Fe-TNU-9 제올라이트는 H-TNU-9에 비해 최대 60%까지의 결정화도가 감소하였다. 이러한 결정화도의 감소는 비표면적 및 기공부피와 연관질 수 있지만 감소정도는 약 10% 정도로 결정화도 감소와 비교하면 영향은 크지 않았다.멱차수법을 이용한N2 O분해반응에 있어N2 O 부분 반응차수는 420℃에서 0.69, 464℃에서 0.97차까지 변화하였다.활성화 에너지는N2 O의 농도가 증가하면 같은 경향으로 증가하였고, 34∼43 kcal/mol 범위 내에서 넓게 분포하였다.
Iron-containing TNU-9 zeolites were prepared by aqueous ion exchange in the range of Fe contents 0.6∼3.3 wt%. Direct decomposition of N2O was performed varying N2O concentrations and reaction temperatures. Fe-TNU-9 zeolites used were characterized using XRD, N2 sorption, SEM/EDX. A 2.7 wt% Fe-TNU-9 zeolite showed high activities and above this contents of Fe the effect of catalytic activity was little dominated. Fe-TNU-9 zeolites after ion exchange conserved their TNU-9 structure although the degree of crystallinity was decreased until ca. 60% in 3.1 wt% Fe-TNU-9 zeolite after ion exchange in 0.01 M Fe solution. The decrease in the degree of crystallinity could be correlated with the decrease of surface area and pore volume. The partial reaction order of N2O in the decomposition of N2O was dependent on the reaction temperature from 0.69 at 420℃to 0.97 at 494℃. The activation energy of N2O was also dependent on the N2O concentration and its value is ranged to 34∼43 kcal/mol.
  1. Chang KS, J. Korean Ind. Eng. Chem., 19(1), 17 (2008)
  2. Kapteijn F, Rodriguezmirasol J, Moulijn JA, Appl. Catal. B: Environ., 9(1-4), 25 (1996)
  3. Perez-Ramirez J, Kaptejin F, Mul G, Moulijin J, Catal. Commun., 3, 19 (2002)
  4. http://www.gihoo.or.kr
  5. Winter ERS, J. Catal., 19, 32 (1970)
  6. Winter ERS, J. Catal., 34, 431 (1974)
  7. Parvulescu VI, Grange P, Delmon B, Catal. Today, 46(4), 233 (1998)
  8. Dandekar A, Vannice MA, Appl. Catal. B: Environ., 22(3), 179 (1999)
  9. Yuzaki K, Yarimizu T, Aoyagi K, Ito S, Kunimori K, Catal. Today, 45(1-4), 129 (1998)
  10. Samy CS, Cristoher J, Catal Rev. Sci. Eng., 34, 409 (1992)
  11. Ishihara T, Ando M, Sada K, Takiishi K, Yamada K, Nishiguchi H, Takita Y, J. Catal., 220(1), 104 (2003)
  12. Dacquin JP, Dujardin C, Granger P, J. Catal., 253, 37 (2008)
  13. Leglise J, Petunchi JO, Hall WH, J. Catal., 86, 392 (1984)
  14. Gramn F, Baerlocher C, McCusker LB, Warrender SJ, Wright PA, Han B, Hong SB, Ohsuna T, Terasaki O, Nature, 444, 79 (2006)
  15. Hong SB, Min HK, Shin CH, Cox PA, Warrender SJ, Wright PA, J. Am. Chem. Soc., 129(35), 10870 (2007)
  16. International Zeolite Association, Structure Commission, http://www.iza-structure.org.
  17. Park JH, Choung JH, Nam IS, Ham SW, Appl. Catal. B: Environ., 78, 342 (2008)
  18. Perez-Ramirez J, Kapteijn F, Bruckner A, J. Catal., 218(1), 234 (2003)
  19. Park JH, Jeon SH, Khoa NV, Shin CH, Clean Technology, 15, 122 (2009)
  20. Kawi S, Liu SY, Shen SC, Catal. Today, 68(1-3), 237 (2001)
  21. Yoshida M, Nobukawa T, Ito SI, Tomishige K, Kunimori K, J. Catal., 223(2), 454 (2004)
  22. Coq B, Mauvezin M, Delahay G, Kieger S, J. Catal., 195(2), 298 (2000)
  23. Pirngruber GD, Luechinger M, Roy PK, Cecchetto A, Smirniotis P, J. Catal., 224(2), 429 (2004)
  24. Roy P, Pirngruber GD, J. Catal., 227, 167 (2004)
  25. Wood BR, Reimer JA, Bell AG, J. Catal., 209(1), 151 (2002)
  26. Wood BR, Reimer JA, Bell AT, Janicke MT, Ott KC, J. Catal., 224(1), 148 (2004)
  27. Ryder JA, Chakraborty AK, Bell AT, J. Phys. Chem. B, 106(28), 7059 (2002)
  28. Heyden A, Bell AT, Keil FJ, J. Catal., 233(1), 26 (2005)