화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.52, No.6, 706-712, December, 2014
HMX의 양에 따른 최대압력 및 폭풍파속도 분석
Maximum Pressure and the Blast Wave Analysis of a Amount of HMX
E-mail:
초록
폭약은 높은 에너지를 포함하는 반응성 물질이며 폭발이 발생할 경우 강한 빛, 높은 열, 소음 및 고압을 발생시킨다. 폭발 지점 주변의 손상은 대부분 높은 과압과 폭풍파에 영향을 받는다. 따라서 폭발에 의한 압력 및 폭풍파의 분석이 매우 중요하다. 본 연구에서는 HMX와 같은 고폭화약의 최대 과압 및 폭풍파 속도를 분석하였다. 먼저 HMX 폭발에 관하여 4가지 경우를 선정하고 폭발현상을 모델링하였으며 HMX의 양에 따른 폭발시뮬레이션을 통하여 최대 과압 및 폭풍파 속도를 도출하였다. 또한, 폭발이 Geometry 중심에서 일어난다고 가정하고 계산된 과압과 폭풍파 속도로부터 폭심에서 인접해 있는 위치의 영향을 분석하였다. 대조군으로 이용된 TNT도 함께 시뮬레이션 및 분석하였으며 HMX 시뮬레이션 결과와 비교함으로써 HMX의 상대적인 과압 및 폭풍파속도를 확인하였다. 본 연구는 HMX가 포함된 복합화약이 폭발하였을 경우 최대 과압 및 폭풍파속도 산정 시 기초데이터로 활용할 수 있다.
Explosives are reactive material that contain a great amount of high potential energy. They produce detonation if released suddenly, accompanied by the production of strong light, high heat, great noise and high pressure. Damage at surrounding detonation point is affected by high pressure and blast wave for explosives detonation. Consequently, analysis of pressure and blast wave is very important. This study focuses on the analysis of maximum overpressure and blast wave of explosives for safety assurance. First of all, four cases of the amount of HMX were selected. Secondly, maximum pressure and blast wave were calculated through detonation simulation along with a set of TNT and HMX quantities. The peripheral effect of detonation point was analyzed by calculating overpressure and absolute velocity and considering detonation occurred in the center of geometry by HMX. Also, maximum overpressure and blast wave of HMX were compared to equivalent amount of TNT, which was taken as a base case and verified through theoretical HMX graph. This study contributes to the base case for overpressure and blast wave of complex gunpowder containing HMX.
  1. Kim HS, Korean Chem. Eng. Res., 44(5), 435 (2006)
  2. Jung WJ, J. Kosham, 13, 123 (2013)
  3. Baker WE, University of Texas, Austin, 150 (1973)
  4. Sochet I, Fardebas D, Calderara S, Marchal Y, Longuet B, J. Safety Sci and Tech, 1, 31 (2011)
  5. Jeremic R, Bajic Z, “An Approach to Determining the TNT Equivalent of High Explosives,” Scientific-Technical Review, LVI(1) (2006)
  6. Seok J, Jeong SM, Park JC, Paik JK, J. Ocean Engineering and Technology, 27, 59 (2013)
  7. Park DJ, Lee YS, Korean J. Chem. Eng., 26(2), 313 (2009)
  8. Kim EJ. Park JD, Cho JH, Moon I, J. Hydrogen Energy, 38, 1747 (2013)
  9. Lee MH, Chung WJ, “Development of Hydrocode for Large Deformations,” Computational Structural Engineering Institute of Korea (2009)
  10. Park JS, “A Study on the Detonation Behavior of Insensitive Explosive by Experiments and Computational Simulation,” Ph.D. Dissertation, Rensselaer KAIST Institute, Daejeon (2011)
  11. Formby SA, Wharton RK, J. Hazard. Mater., 50, 183 (1996)
  12. Hwang IH, Posco Engineering Technical Report, 28(1), 18 (2012)
  13. Crowl DA, Louver JF, Chemical Process Safety : Fundamentals with applications, 3rd ed., Prentice Hall (2011)
  14. Sochet I, Gardebas D, Calderara S, Marchal Y, Longuet B, OJSST, 1, 31 (2011)