Korea-Australia Rheology Journal, Vol.27, No.3, 227-239, August, 2015
Transient rheological behavior of natural polysaccharide xanthan gum solutions in start-up shear flow fields: An experimental study using a strain-controlled rheometer
E-mail:
The objective of the present study is to experimentally investigate the transient rheological behavior of concentrated xanthan gum solutions in start-up shear flow fields. Using a strain-controlled rheometer, a number of constant shear rates were suddenly imposed to aqueous xanthan gum solutions with different concentrations and the resultant shear stress responses were measured with time. The main findings obtained from this study can be summarized as follows: (1) For all shear rates imposed, however low it may be, the shear stress is rapidly increased with time (stress overshoot) upon inception of steady shear flow before passing through the maximum stress value and then gradually decreased with time (stress decay) until reaching a steady state flow. (2) As the imposed shear rate is increased, a more pronounced stress overshoot takes place and the maximum stress value becomes larger, whereas both times at which the maximum stress is observed and needed to reach a steady state flow are shortened. (3) The maximum shear stress is linearly increased with shear rate in a double logarithmic scale and becomes larger with increasing concentration at equal shear rates. In addition, the time at which the maximum stress occurs exhibits a linear relationship with the inverse of shear rate in a double logarithmic scale for all xanthan gum solutions, regardless of their concentrations. (4) The shear stress is sharply increased with an increase in strain until reaching the maximum stress at small range of deformations. The maximum stress is observed at similar strain values, irrespective of the imposed shear rates lower than 10 1/s. (5) The Bird-Leider model can be successfully used with regard to quantitatively predicting the transient behavior of concentrated xanthan gum solutions. However, this model has a fatal weakness in terms of describing a decrease in shear stress (stress decay).
Keywords:xanthan gum;transient rheology;start-up shear flow;stress overshoot;stress decay;Bird-Leider model
- Bae JW, Lee JS, Song KW, Text. Sci. Eng., 50, 292 (2013)
- Bird RB, Armstrong RC, Hassager O, 1987, Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics, 2nd Ed., John Wiley and Sons, New York.
- Born K, Largendorff V, Boulenguer P, 2001, Biopolymers, Vol. 5, Wiley-Interscience, New York.
- Boukany PE, Wang SQ, Wang XR, J. Rheol., 53(3), 617 (2009)
- Camesano TA, Wilkinson KJ, Biomacromolecules, 2(4), 1184 (2001)
- Carmona JA, Ramirez P, Calero N, Munoz J, J. Food Eng., 126, 165 (2014)
- Carreau PJ, De Kee DCR, Chhabra RP, 1997, Rheology of Polymeric Systems: Princeples and Applications, Carl Hanser Verlag, Munich.
- Chang GS, Koo JS, Song KW, Korea-Aust. Rheol. J., 15(2), 55 (2003)
- Choppe E, Puaud F, Nicolai T, Benyahia L, Carbohydr. Polym., 82, 1228 (2010)
- Chun MS, Kim C, Lee DE, Phys. Rev. E, 79, 051919 (2009)
- Chun MS, Ko MJ, J. Korean Phys. Soc., 61, 1108 (2012)
- Chun MS, Park OO, Macromol. Chem. Phys., 195, 701 (1994)
- Dealy JM, Wissbrun KF, 1990, Melt Rheology and Its Role in Plalstics Processing: Theory and Applications, Van Nostrand Reinhold, New York.
- Delgado MA, Franco JM, Valencia C, Kuhn E, Gallegos C, Mech. Time-Depend. Mater., 13, 63 (2009)
- Garcia-Ochoa F, Santos VE, Casas JA, Gomez E, Biotechnol. Adv., 18, 549 (2000)
- Giboreau A, Cuvelier G, Launay B, J. Texture Stud., 25, 119 (1994)
- Holzwarth G, Prestridge EB, Science, 197, 757 (1977)
- Huang J, Yan B, Faghihnejad A, Xu H, Zeng H, Korea-Aust. Rheol. J., 26(1), 3 (2014)
- Islam MT, Archer LA, J. Polym. Sci. B: Polym. Phys., 39(19), 2275 (2001)
- Islam MT, Rodriguez-Hornedo N, Ciotti S, Ackermann C, Pharm. Res., 21, 1192 (2004)
- Jang HY, Zhang K, Chon BH, Choi HJ, J. Ind. Eng. Chem., 21, 741 (2015)
- Katzbauer B, Polym. Degrad. Stabil., 59, 81 (1998)
- Koumakis N, Petekidis G, Soft Matter, 7, 2456 (2011)
- Krishnan K, Burghardt WR, Lodge TP, Bates FS, Langmuir, 18(25), 9676 (2002)
- Lapasin R, Pricl S, 1999, Rheology of Industrial Polysaccharides:Theory and Applications, Aspen Publishers, Gaithersburg, MD.
- Lee JY, Jung HW, Hyun JC, Korea-Aust. Rheol. J., 24(4), 333 (2012)
- Leider PJ, Ind. Eng. Chem. Fundam., 13, 342 (1974)
- Leider PJ, Bird RB, Ind. Eng. Chem. Fundam., 13, 336 (1974)
- Letwimolnun W, Vergnes B, Ausias G, Carreau PJ, J. Non-Newton. Fluid Mech., 141(2-3), 167 (2007)
- Lim T, Uhl JT, Prudhomme RK, J. Rheol., 28, 367 (1984)
- Ma L, Barbosa-Canovas GV, J. Food Sci., 62, 1124 (1997)
- Mahaut F, Chateau X, Coussot P, Ovarlez G, J. Rheol., 52(1), 287 (2008)
- Margaritis A, Zajic JE, Biotechnol. Bioeng., 20, 939 (1978)
- Mewis J, Moldenaers P, Mol. Cryst. Liq. Cryst., 153, 291 (1987)
- Milas M, Rinaudo M, Knipper M, Schuppiser JL, Macromolecules, 23, 2506 (1990)
- NAVARRO AS, MARTINO MN, ZARITZKY NE, J. Food Eng., 26(4), 481 (1995)
- Navarro AS, Martino MN, Zaritzky NE, J. Texture Stud., 28, 365 (1997)
- Ogawa K, Yui T, 1998, Polysaccharides: Structural Diversity and Functional Versatility-X.ray Diffraction Study of Polysaccharides, Dumitriu S, Ed., Marcel Dekker, New York, pp.101-130.
- Osaki K, Inoue T, Isomura T, J. Polym. Sci. B: Polym. Phys., 38(14), 1917 (2000)
- Pal R, AIChE J., 41(4), 783 (1995)
- Palaniraj A, Jayaraman V, J. Food Eng., 106(1), 1 (2011)
- Partal P, Guerrero A, Berjano M, Gallegos C, J. Food Eng., 41(1), 33 (1999)
- Richardson RK, Ross-Murphy SB, Int. J. Biol. Macromol., 9, 257 (1987)
- Rochefort WE, Middleman S, J. Rheol., 31, 337 (1987)
- Rodd AB, Cooper-White J, Dunstan DE, Boger DV, Polymer, 42(1), 185 (2001)
- Rossmurphy SB, J. Rheol., 39(6), 1451 (1995)
- Ross-Murphy SB, Shatwell KP, Biorheology, 30, 217 (1993)
- Santore MM, Prudhomme RK, Carbohydr. Polym., 12, 329 (1990)
- Song KW, Bae JW, Chang GS, Noh DH, Park YH, Lee CH, J. Korea Pharm. Sci., 29, 295 (1999)
- Song KW, Chang GS, Kim CB, Lee JO, Paik JS, J. Korea Fiber Soc., 35, 480 (1998)
- Song KW, Kim YS, Chang GS, Fibers Polym., 7, 129 (2006)
- Song KW, Kuk HY, Chang GS, Korea-Aust. Rheol. J., 18(2), 67 (2006)
- Stokke BT, Christensen, BE, Smidsrod O, 1998, Polysaccharides: Structural Diversity and Functional Versatility-Macromolecular Properties of Xanthan, Dumitriu S, Ed., Marcel Dekker, New York, pp. 433-472.
- Tam KC, Tiu C, J. Rheol., 33, 257 (1989)
- Tanner RI, 2000, Engineering Rheology, 2nd Ed., Oxford University Press, New York.
- Tezel AK, Oberhauser JP, Graham RS, Jagannathan K, McLeish TCB, Leal LG, J. Rheol., 53(5), 1193 (2009)
- van Melick HGH, Govaert LE, Meijer HEH, Polymer, 44(2), 457 (2003)
- van Melick HGH, Govaert LE, Meijer HEH, Polymer, 44(12), 3579 (2003)
- Wagner MH, Rheol. Acta, 15, 136 (1976)
- Wang SQ, Ravindranath S, Wang Y, Boukany P, J. Chem. Phys., 127, 064903 (2007)
- Wang YY, Wang SQ, J. Rheol., 53(6), 1389 (2009)
- Whitcomb PJ, Macosko CW, J. Rheol., 22, 493 (1978)
- Wyatt NB, Liberatore MW, J. Appl. Polym. Sci., 114(6), 4076 (2009)
- Xu L, Xu G, Liu T, Chen Y, Gong H, Carbohydr. Polym., 92, 516 (2013)
- Zirnsak MA, Boger DV, Tirtaatmadja V, J. Rheol., 43(3), 627 (1999)