화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.18, No.2, 67-81, June, 2006
Rheology of concentrated xanthan gum solutions: Oscillatory shear flow behavior
E-mail:
Using a strain-controlled rheometer, the dynamic viscoelastic properties of aqueous xanthan gum solutions with different concentrations were measured over a wide range of strain amplitudes and then the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a broad range of angular frequencies. In this article, both the strain amplitude and concentration dependencies of dynamic viscoelastic behavior were reported at full length from the experimental data obtained from strain-sweep tests. In addition, the linear viscoelastic behavior was explained in detail and the effects of angular frequency and concentration on this behavior were discussed using the well-known power-law type equations. Finally, a fractional derivative model originally developed by Ma and Barbosa-Canovas (1996) was employed to make a quantitative description of a linear viscoelastic behavior and then the applicability of this model was examined with a brief comment on its limitations. Main findings obtained from this study can be summarized as follows: (1) At strain amplitude range larger than 10%, the storage modulus shows a nonlinear strain-thinning behavior, indicating a decrease in storage modulus as an increase in strain amplitude. (2) At strain amplitude range larger than 80%, the loss modulus exhibits an exceptional nonlinear strain-overshoot behavior, indicating that the loss modulus is first increased up to a certain strain amplitude (γ0≒150%) beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (3) At sufficiently large strain amplitude range (γ0 > 200%), a viscous behavior becomes superior to an elastic behavior. (4) An ability to flow without fracture at large strain amplitudes is one of the most important differences between typical strong gel systems and concentrated xanthan gum solutions. (5) The linear viscoelastic behavior of concentrated xanthan gum solutions is dominated by an elastic nature rather than a viscous nature and a gel-like structure is present in these systems. (6) As the polymer concentration is increased, xanthan gum solutions become more elastic and can be characterized by a slower relaxation mechanism. (7) Concentrated xanthan gum solutions do not form a chemically cross-linked stable (strong) gel but exhibit a weak gel-like behavior. (8) A fractional derivative model may be an attractive means for predicting a linear viscoelastic behavior of concentrated xanthan gum solutions but classified as a semiempirical relationship because there exists no real physical meaning for the model parameters.
  1. Ahmed J, Ramaswamy HS, Food Hydrocolloids, 18, 367 (2004) 
  2. Alupei IC, Popa M, Hamcerencu M, Abadie MJM, Eur. Polym. J., 38, 2313 (2002) 
  3. Bagley RL, Torvik PJ, J. Rheol., 27, 201 (1983) 
  4. Bagley RL, Torvik PJ, J. Rheol., 30, 133 (1986) 
  5. Born K, Langendorff V, Boulenguer P, Biopolymers, Vol. 5, Wiley-Interscience, New York, USA (2001)
  6. Bosworth RCL, Nature, 137, 447 (1946)
  7. Bower C, Gallegos C, Mackley MR, Madiedo JM, Rheol. Acta, 38(2), 145 (1999) 
  8. Callet F, Milas M, Rinaudo M, J. Biol. Macromol., 9, 291 (1987) 
  9. Camesano TA, Wilkinson KJ, Biomacromolecules, 2, 1184 (2001) 
  10. Carnali JO, Rheol. Acta, 31, 399 (1992) 
  11. Carriere CJ, Amis EJ, Schrag JL, Ferry JD, J. Rheol., 37, 469 (1993) 
  12. Cha JH, Chang GS, Song KW, Theor. Appl. Rheol., 6, 121 (2002)
  13. Chang GS, Song KW, Theor. Appl. Rheol., 4, 62 (2000)
  14. Chang GS, Koo JS, Song KW, Theor. Appl. Rheol., 6, 97 (2002)
  15. Chang GS, Koo JS, Song KW, Korea-Aust. Rheol. J., 15(2), 55 (2003)
  16. Daskarakis SA, in Handbook of Pharmaceutical Excipients (A. Wade and P.J. Weller Eds.), American Pharmaceutical Association, Washington DC, USA, 562-563 (1994)
  17. Dealy JM, Wissburn KF, Melt Rheology and Its Role in Plastics Processing: Theory and Applications, Van Nostrand Reinhold, New York, USA (1990)
  18. Dumitriu S, Dumitriu M, Teaca G, Clin. Mater., 6, 265 (1990) 
  19. Dumitriu S, Chornet E, Biotechnol. Prog., 13(5), 539 (1997) 
  20. Ferry JD, Viscoelastic Properties of Polymers, 3rd ed., John Wiley & Sons., New York, USA (1980)
  21. Friedrich C, Rheol. Acta, 30, 151 (1991) 
  22. Garcia-Ochoa F, Santos VE, Alcon A, Chem. Biochem. Eng. J., 11, 69 (1997)
  23. Garcia-Ochoa F, Gomez E, Biochem. Eng. J., 1, 1 (1998) 
  24. Garcia-Ochoa F, Santos VE, Casas JA, Gomez E, Biotechnol. Adv., 18, 549 (2000) 
  25. Giacomin AJ, Dealy JM, Large-amplitude oscillatory shear, in Techniques in Rheological Measurement (A.A. Collyer Eds.), Chapmon & Hall, London, UK, 99-121 (1993)
  26. Giboreau A, Cuvelier G, Launay B, J. Texture Stud., 25, 119 (1994)
  27. Harrison G, Franks GV, Tirtaatmadja V, Boger DV, Korea-Aust. Rheol. J., 11(3), 197 (1999)
  28. Hoffmann H, Rauscher A, Colloid Polym. Sci., 271, 390 (1993) 
  29. Holzwarth G, Prestridge EB, Science, 197, 757 (1977) 
  30. Hyun K, Kim SH, Ahn KH, Lee SJ, J. Non-Newton. Fluid Mech., 107(1-3), 51 (2002) 
  31. Hyun K, Nam JG, Wilhelm M, Ahn KH, Lee SJ, Korea-Aust. Rheol. J., 15(2), 97 (2003)
  32. Iseki T, Takahashi M, Hattori H, Hatakeyama T, Hatakeyama H, Food Hydrocolloids, 15, 503 (2001) 
  33. Isono Y, Ferry JD, J. Rheol., 29, 273 (1985) 
  34. Jampala SN, Manolache S, Gunasekaran S, Denes FS, J. Agric. Food Chem., 53, 3618 (2005) 
  35. Kang KS, Pettit DJ, in Industrial Gums (R.L. Whistler and J.N. Be Miller Eds.), 3rd ed., Academic Press, New York, USA, 341-398 (1993)
  36. Katzbauer B, Polym. Degrad. Stabil., 59, 81 (1998) 
  37. Kim C, Yoo B, J. Food Eng., 75, 120 (2006) 
  38. Lapasin R, Pricl S, Rheology of Industrial Polysaccharides: Theory and Applications, Aspen Publishers, Gaithersburg, MD, USA (1999)
  39. Lee HC, Brant DA, Macromolecules, 35(6), 2212 (2002) 
  40. Lee HC, Brant DA, Macromolecules, 35(6), 2223 (2002) 
  41. Li WH, Du H, Guo NQ, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 371, 9 (2004)
  42. Lim T, Uhl JT, Prudhomme RK, J. Rheol., 28, 367 (1984) 
  43. Ma L, Barbosa-Canovas GV, J. Texture Stud., 27, 307 (1996)
  44. Macosko CW, Rheology : Principles, Measurements and Applications, VCH Publishers, New York, USA (1994)
  45. Marcotte M, Taherian-Hoshahili AR, Ramaswamy HS, Food Res. Int., 34, 695 (2001) 
  46. Metzler R, Nonnenmacher TF, Int. J. Plasticity, 19, 941 (2003) 
  47. Nonnenmacher TF, Fractional relaxation equations for viscoelasticity and related phenomena, in Rheological Modeling: Thermodynamical and Statistical Approaches (J. Casas- Vazquez and D. Jou Eds.), Springer-Verlag, Berlin, Germany, 309-320 (1991)
  48. Ogawa K, Yui T, X-ray diffraction study of polysaccharides, in Polysaccharides: Structural Diversity and Functional Versatility (S. Dumitriu Eds.), Marcel Dekker, New York, USA, 101-130 (1998)
  49. Pal R, AIChE J., 41(4), 783 (1995) 
  50. Palade LI, Attane P, Huilgol RR, Mena B, Int. J. Eng. Sci., 37, 315 (1999) 
  51. Palade LI, De Santo JA, Intern. J. Non-Linear Mech., 36, 13 (2001) 
  52. Parthasarathy M, Klingenberg DJ, J. Non-Newton. Fluid Mech., 81(1-2), 83 (1999) 
  53. Nhan PT, SafariArdi M, MoralesPatino A, Rheol. Acta, 36(1), 38 (1997) 
  54. Phan-Thien N, Safari-Ardi M, J. Non-Newton. Fluid Mech., 74(1-3), 137 (1998) 
  55. Pelletier E, Viebke C, Meadows J, Williams PA, Biopolymers, 59, 339 (2001) 
  56. Rochefort WE, Middleman S, J. Rheol., 31, 337 (1987) 
  57. Roland CM, J. Rheol., 34, 25 (1990) 
  58. Ross B, A brief history and exposition of the fundamental theory of fractional calculus, in Fractional Calculus and Its Applications (A. Dold and B. Eckmann Eds.), Springer-Verlag, Berlin, Germany, 1-36 (1975)
  59. Rossikhin YA, Shitikova MV, Int. J. Eng. Sci., 39, 149 (2001) 
  60. Ross-Murphy SB, Morris VJ, Morris ER, Faraday Symp. Chem. Soc., 18, 115 (1983) 
  61. Ross-Murphy SB, Shatwell KP, Biorheology, 30, 217 (1993)
  62. Rossmurphy SB, J. Rheol., 39(6), 1451 (1995) 
  63. Santore MM, Prudhomme RK, Carbohydr. Polym., 12, 329 (1990) 
  64. Schott H, Remington’s Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton, PA, USA (1990)
  65. Sloninsky GL, J. Polym. Sci. C, 16, 1667 (1967)
  66. Song DY, Jiang TQ, Rheol. Acta, 37(5), 512 (1998) 
  67. Song KW, Chang GS, Kim CB, Lee JO, Paik JS, J. Korean Fiber Soc., 33, 1083 (1996)
  68. Song KW, Chang GS, Korean J. Rheol., 10(3), 173 (1998)
  69. Song KW, Kim YS, Chang GS, Fibers and Polymers, In press (2006)
  70. Speers RA, Tung MA, J. Food Sci., 51, 96 (1986) 
  71. Stokke BT, Christensen BE, Smidsrod O, Macromolecular properties of xanthan, in Polysaccharides: Structural Diversity and Functional Versatility (S. Dumitriu Eds.), Marcel Dekker, New York, USA, 433-472 (1998)
  72. Talukdar MM, Vinckier I, Moldenaers P, Kinget R, J. Pharm. Sci., 85, 537 (1996) 
  73. Talukdar MM, Mooter GV, Augustijins P, Tjandra-Maga T, Verbeke N, Kinget R, Int. J. Pharm., 169, 105 (1998) 
  74. Tschoegl NW, The Phenomenological Theory of Linear Viscoslasticc Behavior, Springer-Verlag, Berlin, Germany (1989)
  75. Urlacher B, Noble O, in Thickening and Gelling Agents for Food: Xanthan Gums (A. Imeson Eds.), Chapman and Hall, London, UK, 284-312 (1997)
  76. Wilhelm M, Maring D, Spiess HW, Rheol. Acta, 37(4), 399 (1998) 
  77. Wilhelm M, Reinheimer P, Ortseifer M, Rheol. Acta, 38(4), 349 (1999) 
  78. Wilhelm M, Reinheimer P, Ortseifer M, Neidhofer T, Spiess HW, Rheol. Acta, 39(3), 241 (2000) 
  79. Wilhelm M, Macromol. Mater. Eng., 287, 83 (2002) 
  80. Yosick JA, Giacomin AJ, Moldenaers P, J. Non-Newton. Fluid Mech., 70(1-2), 103 (1997) 
  81. Yziquel F, Carreau PJ, Tanguy PA, Rheol. Acta, 38(1), 14 (1999) 
  82. Yziquel F, Carreau PJ, Moan M, Tanguy PA, J. Non-Newton. Fluid Mech., 86(1-2), 133 (1999) 
  83. Zirnsak MA, Boger DV, Tirtaatmadja V, J. Rheol., 43(3), 627 (1999)