화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.40, 161-167, August, 2016
Solution behaviour of an ester-functionalized gemini surfactant, ethane-1,2-diyl bis(N,N-dimethyl-N-dodecylammoniumacetoxy) dichloride in the presence of inorganic and organic salts
E-mail:
Herein, we have investigated the effect of inorganic and organic salts (NaCl, Na2SO4, Na3PO4, NaAn and NaTos) on the solution behaviour of a gemini surfactant, ethane-1,2-diyl bis(N,N-dimethyl-N-dodecylam-moniumacetoxy) dichloride (12-E2-12), employing surface tensiometry, fluorescence, 1H NMR, TEM, UV-vis, and FT-IR. The surface tension measurements showed that all micellization characteristics were refined in the presence of salts with the order being NaAn > NaTos > Na3PO4 > Na2SO4 > NaCl. Whereas fluorescence measurements were used to estimate the aggregation number (Nagg) of the micelles. 1H NMR, TEM, UV-vis, and FT-IR results revealed morphological transition and newer phase formation. This study in future could be useful for compilation of surfactant-salt mixtures for industrial applications.
  1. Rosen MJ, Surfactants and Interfacial Phenomenon, 3rd ed., John Wiley, NewYork, 2004.
  2. Menger FM, Littau CA, J. Am. Chem. Soc., 113, 1451 (1991)
  3. Devinsky F, Lacko I, Imam T, J. Colloid Interface Sci., 143, 336 (1991)
  4. Zana R, J. Colloid Interface Sci., 248(2), 203 (2002)
  5. Huber L, Nitschke I, in: Holmberg K (Ed.), Handbook of Applied Surface and Colloidal Chemistry, vol. 1, Wiley, Chicester, England, 2002.
  6. Stjerndahl M, Lundberg D, Holmberg K, in: Holmberg K (Ed.), Novel Surfactants, Marcel Dekker, New York, 2003.
  7. Wattebled L, Laschewsky A, Langmuir, 23(20), 10044 (2007)
  8. Kabir-ud-Din, Fatma W, Khan ZA, Dar AA, J. Phys. Chem. B, 111(30), 8860 (2007)
  9. Jiang Y, Chen H, Cui XH, Mao SZ, Liu ML, Luo PY, Du YR, Langmuir, 24(7), 3118 (2008)
  10. Gull N, Sen P, Khan RH, Kabir-ud-Din, Langmuir, 25(19), 11686 (2009)
  11. Manohar C, Rao URK, Valaulikar BS, Iyer RM, J. Chem. Soc. Chem. Commun., 5, 379 (1986)
  12. Siddiqui US, Ghosh G, Kabir-ud-Din, Langmuir, 22(24), 9874 (2006)
  13. Kabir-ud-Din, Fatima W, Khatoon S, Khan ZA, Naqvi AZ, J. Chem. Eng. Data, 53, 229 (2008)
  14. Gao Z, Shuxin T, Qi Z, Yu Z, Bo L, Yushu G, Li H, Xiaoyan T, Wuhan J. Nat. Sci., 13, 227 (2008)
  15. Fatma N, Ansari WH, Panda M, Kabir-ud-Din, Z. Phys. Chem., 227, 133 (2013)
  16. Fatma N, Panda M, Ansari WH, Kabir-ud-Din, Colloids Surf. A: Physicochem. Eng. Asp., 467, 9 (2015)
  17. Panda M, Fatma N, Kabir-ud-Din, J. Mol. Struct., 1115, 109 (2016)
  18. Akram M, Bhatt IA, Kabir-ud-Din, J. Phys. Chem. B, 119(8), 3499 (2015)
  19. Because of two opposing and competing factors (ions’ coulombic and thermal motion of the ions and solvent molecules), ions in solution tend toward an arrangement in which negative ions predominate as the nearest neighbours of any chosen central positive ion and vice versa. Thus, each ion is surrounded by ions of opposite charge giving rise to an ionic atmosphere whose net charge is equal but opposite in sign to that of the central ion. In presence of the ionic atmosphere, the coulomb potential at a distance r from an ion of charge Zie (i.e., Ci(r), given by the equation, Ci(r) = Zie/er . Zieke . e is the medium permittivity) falls off more rapidly (due to the central charge being shielded by the atmosphere). The two terms on the right-hand side represent, respectively, the potential due to the charge on ion itself and that due to charge Zie at a distance 1/k, which has the dimensions of length, and is regarded as the effective radius of the ionic atmosphere or the Debye length. Two main factors that govern its value are (a) the concentration, and (b) the valencies of the ions. For a univalent electrolyte (e.g. KCl), 1/k ~ 3.1 A˚´ for one molar solution (in water at 25 ℃).
  20. Yu DF, Huang X, Deng ML, Lin YY, Jiang LX, Huang JB, Wang YL, J. Phys. Chem. B, 114(46), 14955 (2010)
  21. Jiang N, Li PX, Wang YL, Wang JB, Yan HK, Thomas RK, J. Phys. Chem. B, 108(39), 15385 (2004)
  22. Turro NJ, Yekta A, J. Am. Chem. Soc., 100, 5951 (1978)
  23. Akram M, Bhat IA, Kabir-ud-Din, Colloids Surf. A: Physicochem. Eng. Asp., 493, 32 (2016)
  24. Kabir-ud-Din, Yaseen Z, Aswal VK, Dar AA, Colloid Polym. Sci., 292, 3113 (2014)
  25. Hatzopoulos MH, James C, Rogers S, Grillo I, Dowding PJ, Eastoe J, J. Colloid Interface Sci., 421, 56 (2014)
  26. Siddiqui US, Khan F, Khan IA, Dar AA, Kabir-ud-Din, J. Colloid Interface Sci., 355(1), 131 (2011)
  27. Ulmius J, Wennerstrom H, J. Magn. Reson., 28, 309 (1977)
  28. Rao URK, Manohar C, Valaulikar BS, Iyer RM, J. Phys. Chem., 91, 3286 (1987)
  29. Bachofer SJ, Simonis U, Langmuir, 12(7), 1744 (1996)
  30. Groth C, Nydem M, Holmberg K, Kanicky JR, Shah DO, J. Surf. Deter., 7, 247 (2004)
  31. Gillitt ND, Savelli G, Bunton CA, Langmuir, 22(13), 5570 (2006)
  32. Cui XH, Mao SZ, Liu ML, Yuan HZ, Du YR, Langmuir, 24(19), 10771 (2008)
  33. Khullar P, Singh V, Mahal A, Kumar H, Kaur G, Bakshi MS, J. Phys. Chem. B, 117(10), 3028 (2013)
  34. Bhat M, Gaikar VG, Langmuir, 15(14), 4740 (1999)
  35. Balasubramanian D, Srinivas V, Gaikar VG, Sharma MM, J. Phys. Chem., 93, 3865 (1989)
  36. Narita T, Hirota N, Gong JP, Osada Y, J. Phys. Chem. B, 103(30), 6262 (1999)
  37. Ge W, Shi HF, Talmon Y, Hart DJ, Zakin JL, J. Phys. Chem. B, 115(19), 5939 (2011)