화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.1, 150-159, January, 2017
Hydrodynamic characteristics of valve tray:Computational fluid dynamic simulation and experimental studies
E-mail:
In order to better understand the hydrodynamics of valve trays, air-water operation in an industrial scale tower with 1.2m of diameter, consisting of two 14% valve trays, was studied. Experimental results of clear liquid height, froth height, average liquid holdup, dry pressure drop, total pressure drop, weeping and entrainment were investigated, and empirical correlations were presented. Then, a three-dimensional computational fluid dynamics (CFD) simulation in an Eulerian framework for valve tray with ANSYS CFX software was done. The drag coefficient, which was used in the CFD simulations, was calculated from the data obtained in the experiments. The simulation results were found to be in good agreement with experimental data at this industrial scale. The objective of the work was to study the extent to which experimental and CFD simulations must be used together as a prediction and design tool for industrial trays.
  1. Scheffe RD, Weiland RH, Ind. Eng. Chem. Res., 26, 228 (1987)
  2. Mustafa H, Bekassymolnar E, Chem. Eng. Res. Des., 75(6), 620 (1997)
  3. Wijn EF, Chem. Eng. J., 70(2), 143 (1998)
  4. Brahem R, Royon-Lebeaud A, Legendre D, Moreaud M, Duval L, Chem. Eng. Sci., 100, 23 (2013)
  5. Krishna R, Van Baten JM, Ellenberger J, Higler AP, Taylor R, Chem. Eng. Res. Des., 77(7), 639 (1999)
  6. van Baten JM, Krishna R, Chem. Eng. J., 77(3), 143 (2000)
  7. Gesit G, Nandakumar K, Chuang KT, AIChE J., 49(4), 910 (2003)
  8. Roshdi S, Kasiri N, Hashemabadi SH, Ivakpour J, Korean J. Chem. Eng., 30(3), 563 (2013)
  9. Zarei A, Hosseini SH, Rahimi R, J. Taiwan Institute Chem. Engineers, 44, 27 (2013)
  10. Zuiderweg FJ, Chem. Eng. Sci., 37, 1441 (1982)
  11. Li XG, Liu DX, Xu SM, Li H, Chem. Eng. Process., 48(1), 145 (2009)
  12. Zarei T, Rahimi R, Zivdar M, Korean J. Chem. Eng., 26(5), 1213 (2009)
  13. Solari B, Bell RL, AIChE J., 32, 640 (1986)
  14. Alizadehdakhel A, Rahimi M, Alsairafi AA, Comput. Chem. Eng., 34(1), 1 (2010)
  15. Jiang S, Gao H, Sun JS, Wang YH, Zhang LN, Chem. Eng. Process., 52, 74 (2012)
  16. Ma YF, Ji LJ, Zhang JX, Chen K, Wu B, Wu YY, Zhu JW, Chin. J. Chem. Eng., 23(10), 1603 (2015)
  17. Lockett MJ, Distillation Tray Fundamentals, Cambridge University Press, New York (1986).
  18. Kister HZ, Distillation design, Boston (1992).
  19. Ranade VV, Computational flow modeling for chemical reactor engineering, Academic Press (2001).
  20. Lakehal D, Int. J. Multiph. Flow, 28(5), 823 (2002)
  21. Bennett DL, Agrawal R, Cook PJ, AIChE J., 29, 434 (1983)
  22. Jianping Y, Shurong Y, Adv. Mechanical Eng., 7(11), 1 (2015)
  23. Rahimi R, Zarei A, Zarei T, Firoozsalari HN, Zivdar M, In Distillation Absorption Conference, 407 (2010).
  24. Jia-qiang E, Yu-qiang L, Jin-ke G, J. Cent. South Univ. Technol., 18, 1733 (2011)