화학공학소재연구정보센터
Clean Technology, Vol.23, No.2, 188-195, June, 2017
석탄계 입상활성탄을 이용한 수용액으로부터 염기성 염료의 제거
Removal of Basic Dye from Aqueous Solution using Coal-based Granular Activated Carbon
E-mail:
초록
본 연구에서는 석탄계 입상활성탄을 이용하여 수용액으로부터 염기성 염료 Basic Blue 3 (BB3)의 흡착에 대해 조사하였다. 모든 실험은 회분공정에서 수행하였고, 활성탄의 투입량, 접촉시간, 초기농도 및 온도와 같은 흡착변수들에 대해 평가하였다. 활성탄의 투입량이 증가할수록 BB3 제거율도 증가하였으며, 활성탄 0.2 g 이상에서 초기농도 50 mg L-1의 BB3가 100% 제거되었다. 또한, 흡착평형에 도달하는 시간은 염료의 초기농도에 의존적이었다. Langmuir 모델에 따르면, 석탄계 입상활성탄의 최대흡착량은 25, 35, 45 ℃에서 66.45, 84.97, 87.19 mg g-1으로 산출되었다. 그리고 Gibbs 자유에너지 변화량, 엔탈피 변화량, 엔트로피 변화량과 같은 열역학적 변수들에 대해 평가하였다.
This research studied the adsorption of basic dye, Basic Blue 3 (BB3) by using coal-based granular activated carbon (C-GAC) from aqueous solution. All experiments were performed in batch processes, and adsorption parameters such as C-GAC dosage, contact time, initial dye concentration and temperature were evaluated. The removal efficiency of BB3 was increased with increasing the C-GAC dosage and 100% of initial concentration, 50 mg L-1 was removed above 0.2 g of C-GAC. Also, the time to reach equilibrium depended on the initial dye concentration. According to the Langmuir model, the maximum uptakes of C-GAC were calculated to be 66.45, 84.97 and 87.19 mg g-1 at 25, 35 and 45 ℃, respectively. In addition, thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were investigated.
  1. Gholivand MB, Yamini Y, Dayeni M, Seidi S, Environ. Prog. Sustain., 34, 1683 (2015)
  2. Hameed BH, Mahmoud DK, Ahmad AL, Colloids Surf. A: Physicochem. Eng. Asp., 316(1), 78 (2008)
  3. Gottlieb A, Shaw C, Smith A, Wheatley A, Forsythe S, J. Biotechnol., 101(1), 49 (2003)
  4. Aksu Z, Process Biochem., 40(3), 997 (2005)
  5. Ho YS, McKay G, Process Biochem., 38(7), 1047 (2003)
  6. Turabik M, J. Hazard. Mater., 158(1), 52 (2008)
  7. Mahmoud DK, Salleh MAM, Karim WAWA, Idris A, Abidin ZZ, Chem. Eng. J., 181-182, 449 (2012)
  8. Chan SL, Tan TP, Abdullah AH, Ong ST, J. Taiwan Inst. Chem. Eng., 61, 306 (2016)
  9. Allen SJ, Mckay G, Porter JF, J. Colloid Interface Sci., 280(2), 332 (2004)
  10. Eldien IM, Al-Sarawy AA, El-Halwany MM, El-Msaly FR, J. Chem. Eng. Process Technol., 7, 267 (2016)
  11. Saygili H, Guzel F, J. Clean Prod., 113, 995 (2016)
  12. Li C, Zhang L, Xia H, Peng J, Zhang S, Cheng S, Shu J, J. Mol. Liq., 224, 737 (2016)
  13. Kim HY, Son JY, Rhee SW, Kim DS, KSWST Jour. Wat. Treat., 33(2), 13 (2015)
  14. Abussaud B, Asmaly HA, Saleh TA, Gupta VK, Atieh MA, J. Mol. Liq., 213, 351 (2016)
  15. Tan IAW, Ahmad AL, Hameed BH, Desalination, 225(1), 13 (2008)
  16. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M, Appl. Geochem., 22(2), 249 (2007)
  17. Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154(1), 337 (2008)
  18. Barka N, Ouzaouit K, Abdennouri M, El Makhfouk M, J. Taiwan Inst. Chem. Eng., 44(1), 52 (2013)
  19. Haghseresht F, Lu GQ, Energy Fuels, 12(6), 1100 (1998)
  20. Fytianos K, Voudrias E, Kokkalis E, Chemosphere, 40(1), 3 (2000)
  21. dos Santos A, Viante MF, dos Anjos PP, Naidek N, Moises MP, de Castro EG, Downs AJ, Almeida CAP, Desalin. Water Treat., 57(56), 27213 (2016)
  22. Chu HC, Chen KM, Process Biochem., 37(6), 595 (2002)
  23. Kim SY, Jin MR, Chung CH, Yun YS, Jahng KY, Yu KY, J. Biosci. Bioeng., 119(4), 433 (2015)
  24. Ong ST, Tan SY, Khoo EC, Lee SL, Ha ST, Desalin. Water Treat., 45(1-3), 161 (2012)
  25. Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM, Dyes Pigment., 77(1), 16 (2008)
  26. Lee JJ, Appl. Chem. Eng., 27(2), 199 (2016)
  27. Dogan M, Alkan M, Demirbas O, Ozdemir Y, Ozmetin C, Chem. Eng. J., 124(1), 89 (2006)
  28. Ghaedi M, Hossainian H, Montazerozohori M, Shokrollahi A, Shojaipour F, Soylak M, Purkait MK, Desalination, 281, 226 (2011)
  29. Ryoo KS, Hong YP, Ahn CJ, J. Korean Chem. Soc., 56(6), 692 (2012)