Clean Technology, Vol.23, No.2, 188-195, June, 2017
석탄계 입상활성탄을 이용한 수용액으로부터 염기성 염료의 제거
Removal of Basic Dye from Aqueous Solution using Coal-based Granular Activated Carbon
E-mail:
초록
본 연구에서는 석탄계 입상활성탄을 이용하여 수용액으로부터 염기성 염료 Basic Blue 3 (BB3)의 흡착에 대해 조사하였다. 모든 실험은 회분공정에서 수행하였고, 활성탄의 투입량, 접촉시간, 초기농도 및 온도와 같은 흡착변수들에 대해 평가하였다. 활성탄의 투입량이 증가할수록 BB3 제거율도 증가하였으며, 활성탄 0.2 g 이상에서 초기농도 50 mg L-1의 BB3가 100% 제거되었다. 또한, 흡착평형에 도달하는 시간은 염료의 초기농도에 의존적이었다. Langmuir 모델에 따르면, 석탄계 입상활성탄의 최대흡착량은 25, 35, 45 ℃에서 66.45, 84.97, 87.19 mg g-1으로 산출되었다. 그리고 Gibbs 자유에너지 변화량, 엔탈피 변화량, 엔트로피 변화량과 같은 열역학적 변수들에 대해 평가하였다.
This research studied the adsorption of basic dye, Basic Blue 3 (BB3) by using coal-based granular activated carbon (C-GAC) from aqueous solution. All experiments were performed in batch processes, and adsorption parameters such as C-GAC dosage, contact time, initial dye concentration and temperature were evaluated. The removal efficiency of BB3 was increased with increasing the C-GAC dosage and 100% of initial concentration, 50 mg L-1 was removed above 0.2 g of C-GAC. Also, the time to reach equilibrium depended on the initial dye concentration. According to the Langmuir model, the maximum uptakes of C-GAC were calculated to be 66.45, 84.97 and 87.19 mg g-1 at 25, 35 and 45 ℃, respectively. In addition, thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were investigated.
- Gholivand MB, Yamini Y, Dayeni M, Seidi S, Environ. Prog. Sustain., 34, 1683 (2015)
- Hameed BH, Mahmoud DK, Ahmad AL, Colloids Surf. A: Physicochem. Eng. Asp., 316(1), 78 (2008)
- Gottlieb A, Shaw C, Smith A, Wheatley A, Forsythe S, J. Biotechnol., 101(1), 49 (2003)
- Aksu Z, Process Biochem., 40(3), 997 (2005)
- Ho YS, McKay G, Process Biochem., 38(7), 1047 (2003)
- Turabik M, J. Hazard. Mater., 158(1), 52 (2008)
- Mahmoud DK, Salleh MAM, Karim WAWA, Idris A, Abidin ZZ, Chem. Eng. J., 181-182, 449 (2012)
- Chan SL, Tan TP, Abdullah AH, Ong ST, J. Taiwan Inst. Chem. Eng., 61, 306 (2016)
- Allen SJ, Mckay G, Porter JF, J. Colloid Interface Sci., 280(2), 332 (2004)
- Eldien IM, Al-Sarawy AA, El-Halwany MM, El-Msaly FR, J. Chem. Eng. Process Technol., 7, 267 (2016)
- Saygili H, Guzel F, J. Clean Prod., 113, 995 (2016)
- Li C, Zhang L, Xia H, Peng J, Zhang S, Cheng S, Shu J, J. Mol. Liq., 224, 737 (2016)
- Kim HY, Son JY, Rhee SW, Kim DS, KSWST Jour. Wat. Treat., 33(2), 13 (2015)
- Abussaud B, Asmaly HA, Saleh TA, Gupta VK, Atieh MA, J. Mol. Liq., 213, 351 (2016)
- Tan IAW, Ahmad AL, Hameed BH, Desalination, 225(1), 13 (2008)
- Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M, Appl. Geochem., 22(2), 249 (2007)
- Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154(1), 337 (2008)
- Barka N, Ouzaouit K, Abdennouri M, El Makhfouk M, J. Taiwan Inst. Chem. Eng., 44(1), 52 (2013)
- Haghseresht F, Lu GQ, Energy Fuels, 12(6), 1100 (1998)
- Fytianos K, Voudrias E, Kokkalis E, Chemosphere, 40(1), 3 (2000)
- dos Santos A, Viante MF, dos Anjos PP, Naidek N, Moises MP, de Castro EG, Downs AJ, Almeida CAP, Desalin. Water Treat., 57(56), 27213 (2016)
- Chu HC, Chen KM, Process Biochem., 37(6), 595 (2002)
- Kim SY, Jin MR, Chung CH, Yun YS, Jahng KY, Yu KY, J. Biosci. Bioeng., 119(4), 433 (2015)
- Ong ST, Tan SY, Khoo EC, Lee SL, Ha ST, Desalin. Water Treat., 45(1-3), 161 (2012)
- Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM, Dyes Pigment., 77(1), 16 (2008)
- Lee JJ, Appl. Chem. Eng., 27(2), 199 (2016)
- Dogan M, Alkan M, Demirbas O, Ozdemir Y, Ozmetin C, Chem. Eng. J., 124(1), 89 (2006)
- Ghaedi M, Hossainian H, Montazerozohori M, Shokrollahi A, Shojaipour F, Soylak M, Purkait MK, Desalination, 281, 226 (2011)
- Ryoo KS, Hong YP, Ahn CJ, J. Korean Chem. Soc., 56(6), 692 (2012)