화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.5, 835-843, September, 2017
탄소나노튜브 및 함산소불화 탄소섬유분말 강화 에폭시 복합재의 기계적 특성
Mechanical Properties of Epoxy Composites Reinforced with Carbon Nanotube and Oxyfluorinated Powdered-carbon Fiber
E-mail:
초록
에폭시 복합재는 그 기계적 특성을 향상시키기 위하여 탄소나노튜브와 함산소불화 표면처리된 탄소섬유 분말을 강화재로 사용하여 제조되었다. 탄소나노튜브와 탄소섬유분말 강화 에폭시 복합재는 탄소나노튜브 강화 복합재보다 비교적 높은 인장강도를 나타내었다. 또한 탄소나노튜브와 함산소불화 탄소섬유분말을 첨가하여 제조된 복합재는 미첨가 에폭시와 비교하여 인장강도 및 충격강도가 각각 최대 112%, 35% 향상되었다. 이러한 결과는 함산소불화에 의하여 탄소섬유분말 표면의 극성 및 거칠기가 상대적으로 향상되고 이에 따라 에폭시 수지와의 계면 접착력이 강화되어 나타난 결과로 사료된다.
Epoxy composites are prepared using carbon nanotube (CNT) and oxyfluorinated powdered-carbon fiber (PCF) as reinforcements to enhance mechanical properties of composites. Tensile strength of PCF and CNT reinforced epoxy composites are relatively higher than that of epoxy composites reinforced CNT only. Also, the tensile and impact strength of epoxy composites added CNT and oxyfluorinated PCF are improved by respectively 112% and 35% than those of neat epoxy. These results are ascribed to increased interfacial adhesion of PCF with epoxy resin due to enhanced polarity and roughness of PCF-surface by oxyfluorination.
  1. Lee SE, Jeong E, Lee MY, Lee MK, Lee YS, J. Ind. Eng. Chem., 33, 73 (2016)
  2. Jin FL, Li X, Park SJ, J. Ind. Eng. Chem., 29, 1 (2015)
  3. Yeo JS, Kim OY, Hwang SH, J. Ind. Eng. Chem., 45, 301 (2017)
  4. Balazs AC, Emrick T, Russell TP, Science, 314, 1107 (2006)
  5. Kuo DH, Chang CC, Su TY, Wang WK, Lin BY, Mater. Chem. Phys., 85(1), 201 (2004)
  6. Ashori A, Menbari S, Bahrami R, J. Ind. Eng. Chem., 38, 37 (2016)
  7. Kim K, Kim Y, Nam J, Baeck SH, Park DW, Shim SE, Polym. Korea, 40(1), 117 (2016)
  8. Irshidat MR, Al-Sale MH, Almashagbeh H, Mater. Des., 89, 225 (2016)
  9. Phan CH, Mariatti M, Koh YH, J. Magn. Magn. Mater., 401, 472 (2016)
  10. Sanes J, Saurin N, Carrion FJ, Ojdos G, Bermudez MD, Compos. Part B, 105, 149 (2016)
  11. Singh BP, Choudhary V, Saini P, Mathur RB, AIP Adv., 2, 022151 (2012)
  12. Peng Q, He X, Li Y, Wang C, Wang R, Hu PA, Yan Y, Sritharan T, J. Mater. Chem., 22, 5928 (2012)
  13. Resende VG, Antunes EF, Lobo AO, Oliveira DAL, Airoldi VJT, Corat EJ, Carbon, 48, 3655 (2010)
  14. Qu L, Zhao Y, Dai L, Small, 2, 1052 (2006)
  15. Oh SM, Lee SM, Kang DW, Roh JL, Carbon Lett, 18, 18 (2016)
  16. Seo MK, Park SJ, Macromol. Res., 17(6), 430 (2009)
  17. Dong W, Liu HC, Park SJ, Jin FL, J. Ind. Eng. Chem., 20(4), 1220 (2014)
  18. Kim DK, An KH, Bang YH, Kwac LK, Oh SY, Kim BJ, Carbon Lett., 19, 32 (2016)
  19. Kand MJ, Heo YJ, Jin FJ, Park SJ, Carbon Lett., 18, 1 (2016)
  20. Chand N, Naik A, Polym. Compos., 29, 736 (2008)
  21. Lee YS, Lee BK, Carbon, 40, 2461 (2002)
  22. Jang JS, Yang HJ, J. Mater. Sci., 35(9), 2297 (2000)
  23. Kim HI, Han W, Choi WK, Park SJ, An KH, Kim BJ, Carbon Lett., 20, 39 (2016)
  24. Kim MJ, Jung MJ, Choi SS, Lee YS, Appl. Chem. Eng., 26(4), 432 (2015)
  25. Zhang Z, Liu Y, Huang Y, Liu L, Bao J, Compos. Sci. Technol., 62, 331 (2002)
  26. Park SJ, Oh JS, Seo MK, Han M, Kim HY, Text. Sci. Eng., 42, 200 (2005)
  27. Chand N, Sharma MK, Wear, 264, 69 (2008)
  28. Si-Eun Lee, Mi-Seon Park, Euigyung Jeong*, Man Young Lee*, Min-Kyung Lee*, and Young-Seak Lee†, Polym. Korea, 39(3), 426 (2015)
  29. Lee KM, Lee SE, Lee YS, Polym. Korea, 40(4), 553 (2016)
  30. Kim MJ, Jung MJ, Kim MI, Choi SS, Lee YS, Appl. Chem. Eng., 26(5), 587 (2015)
  31. Fredricks P, Tedder J, J. Chem. Soc., 144 (1960).
  32. Lee SO, Rhee KY, Park SJ, J. Ind. Eng. Chem., 32, 153 (2015)
  33. Jeong E, Bae TS, Yun SM, Woo SW, Lee YS, Colloids Surf. A: Physicochem. Eng. Asp., 36, 373 (2011)
  34. Moaseri E, Maghrebi M, Baniadam M, Mater. Des., 55, 644 (2014)
  35. Park SJ, Seo MK, Lee YS, Carbon, 41, 723 (2003)
  36. Kim JS, Reneker DH, Polym. Compos., 20, 124 (1999)
  37. Hsiao KT, Alms J, Advani SG, Nanotechnology, 14, 791 (2003)
  38. Ashori A, Menbari S, Bahrami R, J. Ind. Eng. Chem., 38, 37 (2016)
  39. Kim JA, Seong DG, Kang TJ, Youn JR, Carbon, 44, 1898 (2006)