Journal of Industrial and Engineering Chemistry, Vol.70, 253-263, February, 2019
Fabrication of heparinized nano ZnO/poly(vinylalcohol)/carboxymethyl cellulose bionanocomposite hydrogels using artificial neural network for wound dressing application
E-mail:
This study aimed to optimize hydrogel wound dressings to achieve favorable properties of the water vapor transmission rate (WVTR) and proper degree of swelling ratio (DSR) to overcome the issues often associated with most commercial dressings including improper breathability and insufficient exudate absorption. Artificial neural network and response surface methodologies were utilized to design and model bionanocomposites. Besides, the effect of the ratio of components as input data, and WVTR and DSR properties as output (response) data were investigated. Hydrogel systems were produced via the freeze-thaw method and were identified using infrared spectroscopy, dynamic light scattering, and scanning electron microscopy. To increase the antibacterial property of manufactured specimens, zinc oxide nanoparticles were functionalized with heparin, and, other properties including mechanical properties, in vitro wound healing as well as toxicity analysis were investigated on the optimum formulation. Results showed an improvement in mechanical properties in the presence of nanoparticles and also enhanced antibacterial property after conjugating heparin on nanoparticles. In vitro healing and cell viability results approved the biocompatibility and non-toxicity of the samples. Therefore, manufactured dressings were considered to have good DSR and WVTR, mechanical and biocompatibility properties and they exhibited good ability to heal and protect wounds.
Keywords:Heparinized nano ZnO;Poly(vinyl alcohol);Carboxymethyl cellulose;Artificial neural network;Wound dressings
- Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX, Biomaterials, 122, 34 (2017)
- Yang DH, Seo DI, Lee DW, Bhang SH, Park KS, Jang G, Kim CH, Chun HJ, J. Ind. Eng. Chem., 53, 360 (2017)
- Khan MS, Bhaisare ML, Gopal J, Wu HF, J. Ind. Eng. Chem. (2015), doi:http://dx.doi.org/10.1016/j.jiec.2015.12.011.
- Namazi H, Rakhshaei R, Hamishehkar H, Kafil HS, Int. J. Biol. Macromol., 85, 327 (2016)
- Fan K, Yang J, Wu H, Hu Z, Yi J, Tong J, Zhu X, Int. J. Biol. Macromol., 79, 830 (2015)
- Goh MC, Hwang Y, Tae G, Carbohydr. Polym., 147, 251 (2016)
- Das A, Kumar A, Patil NB, Viswanathan C, Ghosh D, Carbohydr. Polym., 130, 254 (2015)
- Hashem M, Sharaf S, Abd El-Hady MM, Hebeish A, Carbohydr. Polym., 95(1), 421 (2013)
- Hebeish A, Hashem M, El-Hady MMA, Sharaf S, Carbohydr. Polym., 92(1), 407 (2013)
- Wang LY, Wang MJ, ACS Sustain. Chem. Eng., 4(5), 2830 (2016)
- Duy Le TM, Duong HTT, Thambi T, Phan VHG, Jeong JH, Lee DH, Biomacromolecules (2018), doi:http://dx.doi.org/10.1021/acs.bio-mac.8b00819.
- Li P, Jiang S, Yu Y, Yang J, Yang Z, J. Mech. Behav. Biomed. Mater., 49, 220 (2015)
- Pillai MM, Gopinathan J, Kumar RS, Kumar GS, Shanthakumari S, Sahanand KS, Bhattacharyya A, Selvakumar R, J. Biomed. Mater. Res. A (2018).
- Ganesh M, Aziz AS, Ubaidulla U, Hemalatha P, Saravanakumar A, Ravikumar R, Peng MM, Choi EY, Jang HT, J. Ind. Eng. Chem. (2016).
- Mahdavinia GR, Massoudi A, Baghban A, Shokri E, J. Environ. Chem. Eng., 2(3), 1578 (2014)
- El Sayed AM, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 331, 41 (2014)
- Wang S, Zhang Q, Tan B, Liu L, Shi L, J. Macromol. Sci. B: Phys., 50(12), 2307 (2011)
- Agarwal R, Alam MS, Gupta B, J. Appl. Polym. Sci., 129(6), 3728 (2013)
- Oyarzun-Ampuero F, Vidal A, Concha M, Morales J, Orellana S, Moreno-Villoslada I, Curr. Pharm. Des., 21(29), 4329 (2015)
- Liang D, Lu Z, Yang H, Gao J, Chen R, ACS Appl. Mater. Interfaces, 8(6), 3958 (2016)
- Mokhena TC, Luyt AS, Carbohydr. Polym., 165, 304 (2017)
- Shao W, Wu J, Wang S, Huang M, Liu X, Zhang R, Carbohydr. Polym., 157, 1963 (2017)
- Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Mohamad D, Nano Micro Lett., 7(3), 219 (2015)
- Raguvaran R, Manuja BK, Chopra M, Thakur R, Anand T, Kalia A, Manuja A, Int. J. Biol. Macromol., 96, 185 (2017)
- Lu Z, Gao J, He Q, Wu J, Liang D, Yang H, Chen R, Carbohydr. Polym., 156, 460 (2017)
- Shankar S, Rhim JW, Carbohydr. Polym., 163, 137 (2017)
- Choi HJ, Thambi T, Yang YH, Bang SI, Kim BS, Pyun DG, Lee DS, RSC Adv., 7, 13714 (2017)
- Pyun DG, Yoon HS, Chung HY, Choi HJ, Thambi Y, Kim BS, J. Mater. Chem. (2015).
- Li G, Xiao Q, Zhang L, Zhao Y, Yang Y, Carbohydr. Polym., 171, 39 (2017)
- Pan CJ, Pang LQ, Gao F, Wang YN, Liu T, Ye W, Hou YH, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 63, 333 (2016)
- Rad SM, Khorasani MT, Joupari MD, Polym. Adv. Technol., 27(3), 325 (2016)
- Aslan C, Celebi N, Degim T, Atak IA, Ozer C, AAPS PharmSciTech, 18(4), 1019 (2017)
- Huang KC, Li Y, Kuo CH, Twu YK, Shieh CJ, Molecules, 21(1), 1 (2016)
- Hosaini-Alvand E, Mirshekar H, Khorasani MT, Parvazinia M, Joorabloo A, J. Appl. Polym. Sci., 134(30), 1 (2017)
- Teo SH, Islam A, Masoumi HRF, Taufiq-Yap YH, Janaun J, Chan ES, Khaleque MA, Renew. Energy, 111, 892 (2017)
- Abdollahi Y, Sairi NA, Aroua MK, Masoumi HRF, Jahangirian H, Alias Y, J. Ind. Eng. Chem., 25, 168 (2015)
- Rao KM, Kumar A, Han SS, Int. J. Biol. Macromol., 101, 165 (2017)
- Wang Y, Qian J, Zhao N, Liu T, Xu W, Suo A, Carbohydr. Polym. (2017).
- Yoo Y, Hyun H, Yoon SJ, Kim SY, Lee DW, Um S, Hong SO, Yang DH, J. Ind. Eng. Chem. (2018).
- Mehrabani MG, Karimian R, Mehramouz B, Rahimi M, Kafil HS, Int. J. Biol. Macromol. (2018).
- Blazevic F, Milekic T, Romic MD, Juretic M, Pepic I, Filipovic-Grcic J, Lovric J, Hafner A, Carbohydr. Polym., 146, 445 (2016)
- Pyun DG, Choi HJ, Yoon HS, Thambi T, Lee DS, Colloids Surf. B: Biointerfaces (2015).
- Noshirvani N, Ghanbarzadeh B, Mokarram RR, Hashemi M, Coma V, Int. J. Biol. Macromol. (2017).
- Khorasani MT, Joorabloo A, Moghaddam A, Shamsi H, Mansoori-Moghadam Z, Int. J. Biol. Macromol., 114, 1203 (2018)
- Alessandro FM, Juliana FP, Ivania TAS, Adley FR, Edvani CM, Colloid Polym. Sci., 289, 1133 (2011)
- Yuvaraja G, Pathak JL, Weijiang Z, Yaping Z, Jiao X, Int. J. Biol. Macromol. (2017).