Korean Journal of Chemical Engineering, Vol.36, No.4, 522-528, April, 2019
Structural properties of disordered macroporous La2O2CO3/ZnO materials prepared by a solution combusion method
E-mail:
Disordered macroporous La2O2CO3/ZnO materials were prepared by a solution combustion method, and then their microstructures and La2O2CO3 phases were investigated as functions of La/Zn ratios and calcination temperatures. All of the materials prepared by the solution combustion method clearly showed disordered macroporous morphology whose framework was composed of ZnO and La2O2CO3 nanoparticles. A monoclinic La2O2CO3 structure was mainly formed in the disordered macroporous materials at La/Zn=1 and 2. In contrast, the conventional coprecipitation of La2O2CO3/ZnO materials dominantly formed a hexagonal La2O2CO3 phase with aggregating morphology of ZnO and La2O2CO3 nanoparticles. However, nanocrystalline sizes of ZnO (7-10 nm) and monoclinic La2O2CO3 (12-14 nm) in the disordered macroporous structure were much smaller than those (29-36 nm for ZnO and 44-58 nm for hexagonal La2O2CO3) by conventional co-precipitation. In addition, the high temperature calcination at 700 °C increased the ZnO nanocrystallite size (24 nm) in the disordered macroporous framework, with transforming La2O2-CO3 into La2O3. This result implies that the interaction between monoclinic La2O2CO3 and ZnO in the disordered macroporous structure inhibited ZnO nanoparticle agglomeration.
Keywords:La2O2CO3 Phases;Disordered Macroporosity;Solution Combustion;Nanoparticle Sizes;Structural Properties
- Meadowcroft DB, J. Phys. D-Appl. Phys., 2, 1225 (1969)
- Song QW, Wang XM, Bussjager R, Osman J, Appl. Opt., 35, 3155 (1996)
- Tarjomannejad A, Farzi A, Niaei A, Salari D, Korean J. Chem. Eng., 33(9), 2628 (2016)
- Park SH, Chun BH, Kim SH, Korean J. Chem. Eng., 28(2), 402 (2011)
- Kaspar J, Fornasiero P, Hickey N, Catal. Today, 77(4), 419 (2003)
- Ma JX, Fang M, Lau NT, Appl. Catal. A: Gen., 150(2), 253 (1997)
- Herrera G, Jimenez-Mier J, Chavira E, Mater. Charact., 89, 13 (2014)
- Ding DG, Lu WB, Xiong Y, Pan XL, Zhang JQ, Ling CC, Du YG, Xue QZ, Appl. Surf. Sci., 426, 725 (2017)
- Jia L, Li J, Fang W, J. Alloy. Compd., 489, L13 (2017)
- Wang F, Zhang ZN, Wei XJ, Fang QH, Jiang XM, Appl. Catal. A: Gen., 543, 196 (2017)
- Li XY, Li D, Tian H, Zeng L, Zhao ZJ, Gong JL, Appl. Catal. B: Environ., 202, 683 (2017)
- Park C, Nguyen-Phu H, Shin EW, Mol. Catal., 435, 99 (2017)
- Li H, Gao D, Gao P, Wang F, Zhao N, Xiao F, Wei W, Sun Y, Catal. Sci. Technol., 3, 2801 (2013)
- Li H, Jiao X, Li L, Zhao N, Xiao F, Wei W, Sun Y, Zhang B, Catal. Sci. Technol., 5, 989 (2015)
- Jin L, Zhang Y, Dombrowski JP, Chen CH, Pravatas A, Xu L, Perkins C, Suib SL, Appl. Catal. B: Environ., 103, 200 (2015)
- Bosch CE, Copley MP, Eralp T, Bilbe E, Thybaut JW, Marin GB, Collier P, Appl. Catal. A: Gen., 536, 104 (2017)
- Niu H, Min Q, Tao Z, Song J, Mao C, Zhang S, Chen Q, J. Alloy. Compd., 509, 744 (2011)
- Mu Q, Wang Y, J. Alloy. Compd., 509, 396 (2011)
- Tsoukalou A, Imtiaz Q, Kim SM, Abdala PM, Yoon S, Muller CR, J. Catal., 343, 208 (2016)
- Pakhare D, Schwartz V, Abdelsayed V, Haynes D, Shekhawat D, Poston J, Spivey J, J. Catal., 316, 78 (2014)
- Sadakane M, Asanuman T, Kubo J, Ueda W, Chem. Mater., 17, 3546 (2005)
- Zhang G, Zhao Z, Liu J, Xu J, Jing Y, Duan A, Jiang G, J. Rare Earths, 27, 955 (2009)
- Irusta S, Cornaglia LM, Lombardo EA, Mater. Chem. Phys., 86(2-3), 440 (2004)
- Turcotte RP, Sawyer JO, Eyring L, Inorg. Chem., 8, 238 (1969)
- Levan T, Che M, Tatibouet JM, Kermarec M, J. Catal., 142, 18 (1993)
- Ni J, Chen LW, Lin JY, Schreyer MK, Wang Z, Kawi S, Int. J. Hydrog. Energy, 38(31), 13631 (2013)