화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.57, No.2, 219-224, April, 2019
실로퓨트의 세팔로마닌 흡착: 등온흡착식 및 속도론적·열역학적 특성
Adsorption of Cephalomannine onto Sylopute: Isotherm, Kinetic and Thermodynamic Characteristics
E-mail:
초록
본 연구에서는 흡착공정에 의한 Taxus chinensis 유래 세팔로마닌의 효율적 분리를 위하여, 흡착 온도, 흡착 시간 및 초기 세팔로마닌 농도를 달리하여 상용흡착제 실로퓨트에 의한 세팔로마닌의 흡착 특성을 조사하였다. 흡착 평형 데 이터는 Temkin 흡착등온식에 가장 적합하였다. 흡착 온도가 증가함에 따라 흡착 용량은 감소하였으며, 물리적 흡착 공 정임을 알 수 있었다. 속도론적 데이터는 유사 이차 반응속도식에 적합하였다. 입자 내 확산 모델에 의하면, 필름 확산 과 입자 내 확산은 전체 흡착 속도에 거의 영향을 미치지 않았다. 열역학적 데이터를 통해 흡착 과정은 발열 반응이며 자발적이었다. 또한 흡착량이 증가함에 따라 등량흡착열은 거의 변화가 없었으며 흡착제의 표면 에너지가 균일함을 알 수 있었다.
In this study, the adsorption characteristics of cephalomannine on commercial adsorbent Sylopute were investigated using different parameters such as adsorption temperature, time, and initial cephalomannine concentration for the efficient separation of Taxus chinensis-derived cephalomannine by adsorption process. The Temkin isotherm model showed good fit to the equilibrium adsorption data. The adsorption capacity decreased with increasing temperature and the adsorption of cephalomannine onto Sylopute was physical in nature. Adsorption kinetic data fitted well with pseudo-second-order kinetic mode. According to the intraparticle diffusion model, film diffusion and intraparticle diffusion did not play a key role in the entire adsorption process. The process of cephalomannine adsorption onto Sylopute was exothermic and spontaneous. In addition, the isosteric heat of adsorption was constant even with variation in surface loading indicating homogeneous surface coverage.
  1. Dong H, Luo L, Zhou S, Bi P, Liu K, Zhao J, Chem. Nat. Compd., 43, 478 (2007)
  2. Zwawiak J, Zaprutko L, J. Med. Sci., 83, 47 (2014)
  3. Georgiev MI, Weber J, Maciuk A, Appl. Microbiol. Biotechnol., 83(5), 809 (2009)
  4. McPartland TJ, Patil RA, Malone MF, Roberts SC, Biotechnol. Prog., 28(4), 990 (2012)
  5. Beckvermit JT, Anziano DJ, Murray CK, J. Org. Chem., 61, 9038 (1996)
  6. Lee CG, Kim JH, Korean Chem. Eng. Res., 54(1), 89 (2016)
  7. Lee CG, Kim JH, Korean Chem. Eng. Res., 52(4), 497 (2014)
  8. Lee SH, Kim JH, Process Biochem., 76, 187 (2019)
  9. Lee CG, Kim JH, Process Biochem., 51(10), 1738 (2016)
  10. Lim YS, Kim JH, J. Chem. Thermodyn., 115, 261 (2017)
  11. Bang SY, Kim JH, Biotechnol. Bioproc. Eng., 22, 620 (2017)
  12. Shin HS, Kim JH, Process Biochem., 51(7), 917 (2016)
  13. Park SH, Kim JH, Biotechnol. Bioproc. Eng., 23, 541 (2018)
  14. Kim YS, Kim JH, J. Chem. Thermodyn., 130, 104 (2019)
  15. Lee JJ, Korean Chem. Eng. Res., 53(1), 64 (2015)
  16. Chowdhury S, Mishra R, Saha P, Kushwaha P, Desalination, 265(1-3), 159 (2011)
  17. Oh HJ, Jung KY, Kim JH, KSBB J., 28, 208 (2013)
  18. Gercel O, Ozcan A, Ozcan AS, Gercel HF, Appl. Surf. Sci., 253(11), 4843 (2007)
  19. Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154(1-3), 337 (2008)
  20. Hata H, Saeki S, Kimura T, Sugahara Y, Kuroda K, Chem Mater., 11, 1110 (1999)
  21. Boparai HK, Joseph M, O'Carroll DM, J. Hazard. Mater., 186(1), 458 (2011)
  22. Zulfikar MA, Int. J. Chem., Environ. Biol. Sci., 1, 88 (2013)
  23. Celekli A, Ilgun G, Bozkurt H, Chem. Eng. J., 191, 228 (2012)
  24. Saha P, Chowdhury S, InTech, Available from: http://www.intechopen.com/books/thermodynamics/insight-into-adsorption-thermodynamics (2011).