화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.87, 110-119, July, 2020
The effect of changing the number of membranes in methane carbon dioxide reforming: A CFD study
E-mail:
The membrane reactor about methane reforming of CO2 (so called dry reforming) is studied by computational fluid dynamics approach. The effect of changing the number of membranes is modeled and investigated. The number of membranes for the simulation is chosen with two, three, four, five, six, eight and nine membranes. The separation distance between each center of the membrane and the center of the reactor is fixed. Cross sections of temperature distributions and the profiles of both hydrogen and methane concentrations within a membrane reactor are shown. In addition, we obtain conversion of methane as well as that of the carbon dioxide for corresponding geometries. Even though the conversions of both methane and carbon dioxide generally decreases (likewise the production of hydrogen does), the permeated hydrogen into the membrane increases as the number of membrane increases. It turns out that the reactor equipped with more number of membranes is preferable for hydrogen selection. This information may give us a critical guideline of reactor design before constructing scaled up reactor.
  1. Dias De Oliveira ME, Vaughan BE, Rykiel EJ, BioOne, 55, 593 (2005)
  2. Muraza O, Galadima A, Int. J. Energy Res., 39(9), 1196 (2015)
  3. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2018, World Meteorological Organization (WMO), WMO Greenhouse Gas Bulletin (GHG Bulletin), 2019.
  4. Usman M, Daud WMA, Abbas HF, Renew. Sust. Energ. Rev., 45, 710 (2015)
  5. Chein RY, Fung WY, Int. J. Hydrog. Energy, 44(28), 14303 (2019)
  6. Gavrilova NN, Sapunov VN, Skudin VV, Chem. Eng. J., 374, 983 (2019)
  7. Zhu Y, Chen K, Yi C, Mitra S, Barat R, Chem. Eng. Commun., 205(7), 888 (2018)
  8. Mondal K, Sasmal S, Badgandi S, Choudhury DR, Nair V, Environ. Sci. Pollu. Res., 23, 22267 (2016)
  9. Er-Rbib H, Boualou C, Werkoff F, Chem. Eng. Trans., 29, 163 (2012)
  10. Debek R, Zubek K, Motak M, Costa PD, Grzybek T, Res. Chem. Intermed., 41, 9485 (2015)
  11. Garzon FP, Optimization of Pyrochlore Catalysts for the Dry Reforming of Methane, PhD Thesis, Graduate School of Clemson University, South Caraolina, USA, 2015.
  12. Leimert JM, Karl J, Dillig M, Processes, 5, 82 (2017)
  13. Kumar S, Kumar B, Kumar S, Jilani S, J. CO2 Util., 20, 336 (2017)
  14. He SF, Wu HM, Yu WJ, Mo LY, Lou H, Zheng XM, Int. J. Hydrog. Energy, 34(2), 839 (2009)
  15. Munera JF, Carrara C, Cornaglia LM, Lombardo EA, Chem. Eng. J., 161(1-2), 204 (2010)
  16. Abdulrasheed A, Jalil AA, Gambo Y, Ibrahim M, Hambali HU, Hamid MYS, Renew. Sust. Energ. Rev., 108, 175 (2019)
  17. Alvarez MA, Centeno MA, Odriozola JA, Top. Catal., 59, 303 (2016)
  18. Itkulova SS, Nurmakanov YY, Kussanova SK, Boleubayev YA, Catal. Today, 299, 272 (2018)
  19. Khani Y, Shariatinia Z, Bahadoran F, Chem. Eng. J., 299, 353 (2016)
  20. Demidov DV, Mishin IV, Mikhailov MN, Int. J. Hydrog. Energy, 36(10), 5941 (2011)
  21. Al-Nakona MA, El-Naas MH, Int. J. Hydrog. Energy, 37, 7528 (2012)
  22. Djinovic P, Crnivec IGO, Erjavec B, Pintar A, Appl. Catal. B: Environ., 125, 259 (2012)
  23. Govin R, Itoh N, eds., AIChE Symposium Series No. 268, Vol. 85(1989).
  24. Sun Y, Khang S, Ind. Eng. Chem. Res., 27, 1136 (1988)
  25. Shu J, Grandjean BPA, Van Neste A, Kaliaguine S, Can. J. Chem. Eng., 69, 1036 (1991)
  26. Hsieh HP, Cat. Rev. Sci. Eng., 33(2), 1 (1991)
  27. Koukou MK, Papayannakos N, Markatos NC, Chem. Eng. J., 83(2), 95 (2001)
  28. Coroneo M, Montante G, Paglianti A, Ind. Eng. Chem. Res., 49(19), 9300 (2010)
  29. Ji GZ, Wang GX, Hooman K, Bhatia S, da Costa JCD, Chem. Eng. J., 218, 394 (2013)
  30. Ji G, Wang G, Hooman K, Bhatia S, da Costa JCD, Chem. Eng. Sci., 111, 142 (2014)
  31. Chen WH, Tsai CW, Lin YL, Chein RY, Yu CT, Fuel, 199, 358 (2017)
  32. Ji G, Zhao M, Wang G, Energy, 147, 884 (2018)
  33. Ji G, Wang G, Hooman K, Bhatia S, da Costa JCD, Front. Chem. Sci. Eng., 6, 3 (2012)
  34. Coronel L, Munera JF, Lombardo EA, Cornaglia LM, Appl. Catal. A: Gen., 400(1-2), 185 (2011)
  35. Sumrunronnasak S, Tantayanon S, Kiatgamolchai S, Sukonket T, Int. J. Hydrog. Energy, 41(4), 2621 (2016)
  36. Yabe T, Sekine Y, Fuel Process. Technol., 181, 187 (2018)
  37. Wang S, Yang XS, Xu SD, Li BW, Fuel Process. Technol., 178, 283 (2018)
  38. de Lima KPM, Dias VD, da Silva JD, Int. J. Hydrog. Energy, 45(17), 10353 (2020)
  39. Chen X, Wang F, Yan X, Cheng Z, Han Y, Jie Z, Solar Energy, 162, 187 (2018)
  40. Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, John Wiley & Sons, Inc., New York, 1960.
  41. Richardson JT, Paripatyadar SA, Appl. Catal., 61, 293 (1990)
  42. Lee B, Yun SW, Kim S, Heo J, Kim YT, Lee S, Lim H, Int. J. Hydrog. Energy, 44(4), 2298 (2019)