화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.11, 973-978, October, 2020
Thermoelectric Properties of Polypyrrole Nanotubes
E-mail:,
Polypyrrole (PPy) nanotubes with different diameters have been successfully prepared by different concentrations of oxidant with methyl orange (MO) as template. When the molar ratio of oxidant to pyrrole monomer was 1.5:1, PPy-1.5:1 nanotubes with smooth surface and diameter of 40?60 nm were obtained. The large crystallization orientations of molecular chains in PPy nanotubes due to the template effect of MO significantly enhance π-π interactions, which improves electrical conductivity of PPy-1.5:1 nanotubes. The great degree of conjugation and the small conjugate defect of the molecular chains in PPy-1.5:1 also contribute to high mobility of carriers and high electrical conductivity. The hollow structures introduced to PPy bring about appropriate grain boundary defects and benefit seebeck coefficient of PPy nanotubes. Enhancement of electrical conductivity and seebeck coefficient of the PPy-1.5:1 nanotubes result in the maximization of power factor of 0.55 μWm-1K-2, about 22 orders of magnitude higher than PPy particles prepared under the same condition. By designing and tailoring the polymer structure, nano-structured PPy with high thermoelectric properties are highly expected.
  1. Liu WS, Xiao Y, Gang C, Ren ZF, Nano Energy, 1, 42 (2012)
  2. Kim GH, Shao L, Zhang K, Pipe KP, Nat. Mater., 12(8), 719 (2013)
  3. He M, Qiu F, Lin ZQ, Energy Environ. Sci., 6, 1352 (2013)
  4. Lee H, Vashaee D, Wang DZ, Dresselhaus MS, Ren ZF, Chen G, J. Appl. Phys., 107, 094308 (2010)
  5. Golgovici F, Cojocaru A, Anicai L, Visan T, Mater. Chem. Phys., 126(3), 700 (2011)
  6. Bailini A, Donati F, Zamboni M, Russo V, Passoni M, Casari CS, Bassi AL, Bottani CE, Appl. Surf. Sci., 4, 1249 (2007)
  7. Wang LM, Yao Q, Bi H, Huang FQ, Wang Q, Chen LD, J. Mater. Chem. A, 3, 7086 (2015)
  8. Aich RB, Blouin N, Bouchard A, Leclerc M, Chem. Mater., 21, 751 (2009)
  9. He XM, Li C, Chen FG, Shi GQ, Adv. Funct. Mater., 17(15), 2911 (2007)
  10. Liang LR, Chen GM, Guo CY, Mater. Chem. Front., 1, 380 (2017)
  11. Hu XC, Chen GM, Wang X, Wang HF, J. Mater. Chem. A, 3, 20896 (2015)
  12. Xin SC, Yang N, Gao F, Zhao J, Li L, Teng C, Mater. Chem. Phys., 212, 440 (2018)
  13. Misra S, Bharti M, Singh A, Debnath AK, Aswal DK, Hayakawa Y, Mater. Res. Express, 4, 085007 (2017)
  14. Li M, Li W, Liu J, Yao J, J. Mater. Sci: Mater. Electron., 24, 906 (2013)
  15. Wu J, Sun Y, Pei WB, Huang L, Xu W, Zhang Q, Synth. Met., 196, 173 (2014)
  16. Bharti M, Jha P, Singh A, Chauhan AK, Misra S, Yamazoe M, Debnath AK, Marumoto K, Muthe KP, Aswal DK, Energy, 176, 853 (2019)
  17. Sayah ZBD, Mekki A, Delaleux F, Riou O, Durastanti JF, J. Electron. Mater., 48, 3662 (2019)
  18. Du Y, Niu H, Li J, Dou YC, Shen SZ, Jia RP, Xu JY, Polymers, 10, 1143 (2018)
  19. Thieblemont JC, Gabelle JL, Planche MF, Synth. Met., 66, 243 (1994)
  20. Tian B, Zerbi G, J. Chem. Phys., 92, 3892 (1990)
  21. Saner B, Gursel SA, Yurum Y, Fuller. Nanotub. Car. N., 21, 233 (2013)
  22. Gu ZM, Li CZ, Wang GC, Zhang L, Li XH, Wang WD, Jin SL, J. Polym. Sci. B: Polym. Phys., 48(12), 1329 (2010)
  23. Fan LN, Xu XC, Compos. Sci. Technol., 118, 264 (2015)
  24. Wang LY, Liu FZ, Jin C, Zhang T, Yin QJ, RSC Adv., 4, 46187 (2014)
  25. Xu K, Chen G, Qiu D, J. Mater. Chem. A, 1, 12395 (2013)
  26. Wang YH, Yang J, Wang LY, Du K, Yin Q, Yin QJ, ACS Appl. Mater. Interfaces, 9, 20124 (2017)
  27. Wang J, Cai KF, Shen S, Yin JL, Synth. Met., 195, 132 (2014)
  28. Yao Q, Chen LD, Zhang WQ, Liufu SC, Chen XH, ACS Nano, 4, 2445 (2010)